9186
J. Am. Chem. Soc. 1996, 118, 9186-9187
Total Synthesis of (()-Taxusin
Ryoma Hara, Takashi Furukawa, Yoshiaki Horiguchi, and
Isao Kuwajima*
Department of Chemistry
Tokyo Institute of Technology
O-okayama, Meguro-ku, Tokyo 152, Japan
ReceiVed April 3, 1996
The taxane diterpenes (Figure 1) isolated from various yew
trees continue to be of extreme interest as synthetic targets1
because of the challenging, complex molecular structure coupled
with the important biological activities. Taxol (3) and its
synthetic analogs are well-known to exhibit promising antitumor
activities2 and several other natural taxanes such as taxinine
(2) were recently revealed to be inhibitors against the P-
glycoprotein.3 Remarkable contribution of both of these proper-
ties to development of new fields of cancer chemotherapy is
expected. We now report a concise total synthesis of (()-
taxusin (1).4
Figure 1. Structure of natural taxanes.
Scheme 1a
In the synthetic plan, we envisioned two key transforma-
tions: (1) construction of the tricyclic taxane skeleton via
cyclization of the eight-membered B ring between C9 and C10
and (2) subsequent installation of the C19 methyl group onto
the ring system.5 We have already established a powerful
method for the eight-membered B ring cyclization by means of
intramolecular vinylogous aldol reaction, using aromatic C ring
derivatives as substrates.6 It was essential for success of this
total synthesis that the methodology could be extended to non-
aromatic, allyl ester-type C ring derivatives such as 12. The C
ring allyl ester moiety was incorporated to serve as a flag for
installation of the C19 methyl group.
Our first task was preparation of cyclization precursor 12
(Scheme 1). We chose vinyl bromide 47 as the starting material,
which corresponds to the C ring of taxusin. Successive
(1) There have been reported four total syntheses of natural taxanes. For
taxusin, see: (a) Holton, R. A.; Juo, R. R.; Kim, H.-B.; Williams, A. D.;
Harusawa, S.; Lowenthal, R. E.; Yogai, S. J. Am. Chem. Soc. 1988, 110,
6558. For taxol, see: (b) Holton, R. A.; Somoza, C.; Kim, H.-B.; Liang,
F.; Biediger, R. J.; Boatman, P. D.; Shindo, M.; Smith, C. C.; Kim, S.;
Nadizadeh, H.; Suzuki, Y.; Tao, C.; Vu, P.; Tang, S.; Zhang, P.; Murthi,
K. K.; Gentile, L. N.; Liu, J. H. J. Am. Chem. Soc. 1994, 116, 1597, 1599.
(c) Nicolaou, K. C.; Yang, Z.; Liu, J. J.; Ueno, H.; Nantermet, P. G.; Guy,
R. K.; Claiborne, C. F.; Renaud, J.; Couladouros, E. A.; Paulvannan, K.;
Sorensen, E. J. Nature 1994, 367, 630. Nicolaou, K. C.; Nantermet, P. G.;
Ueno, H.; Guy, R. K.; Couladouros, E. A.; Sorensen, E. J. J. Am. Chem.
Soc. 1995, 117, 624 and following papers. (d) Masters, J. J.; Link, J. T.;
Snyder, L. B.; Young, W. B.; Danishefsky, S. J. Angew. Chem., Int. Ed.
Engl. 1995, 34, 1723.
a (a) (1) Et2O, -78 °C, 1.5 h; (2) -45 °C, 1 h; (3) -23 °C, 2 h. (b)
4A-MS, CH2Cl2, rt, 1.5 h, 66% from 4. (c) THF, -78 to 5 °C, 7 h,
quantitative. (d) (1) THF, 0 °C, 1 h; (2) 0 °C, 4 h, 60%. (e) THF, -78
°C, 2.5 h, 86%. (f) (1) CH2Cl2, -45 °C, 1 h, 79%; (2) THF, rt,
overnight, 83%. (g) THF, rt, 1 week, 67%. (h) (1) THF, 0 °C, 1 h; (2)
-78 °C, 1 h, quantitative.
(2) For reviews, see: (a) Georg, G. I.; Chen, T. T.; Ojima, I.; Vyas, D.
M. Taxane Anticancer Agents; American Cancer Society: San Diego, CA,
1995. (b) Kingston, D. G. I.; Molinero, A. A.; Rimoldo, J. M. Prog. Chem.
Org. Nat. Prod. 1993, 61, 1. (c) Rowinsky, E. K.; Onetto, N.; Canetta, R.
M.; Arbuck, S. G. Semin. Oncol. 1992, 19, 646.
(3) Kobayashi, J.; Ogiwara, A.; Hosoyama, H.; Shigemori, H.; Yoshida,
N.; Sasaki, T.; Li, Y.; Iwasaki, S.; Naito, M.; Tsuruo, T. Tetrahedron 1994,
50, 7401.
(4) (a) Miyazaki, M.; Shimizu, K.; Mishima, H.; Kurabayashi, M. Chem.
Pharm. Bull. 1968, 16, 546. (b) Liu, C. L.; Lin, Y. C.; Lin, Y. M.; Chen,
F. C. T’ai-wan K’o Hsueh 1984, 38, 119. (c) Erdtman, H.; Tsuno, K.
Phytochemistry 1969, 8, 931. (d) Lee, C. L.; Hirose, Y. Nakatsuka Mokuzai
Gakkaishi 1975, 21, 249. (e) Chan, W. R.; Halsall, T. G.; Hornby, G. M.;
Oxford, A. W.; Sabel, W.; Bjamer, K.; Ferguson, G.; Robertson, J. M. J.
Chem. Soc., Chem. Commun. 1966, 923.
(5) The taxane numbering system, as illustrated in 1, is used throughout.
(6) (a) Horiguchi, Y.; Furukawa, T.; Kuwajima, I. J. Am. Chem. Soc.
1989, 111, 8277. (b) Furukawa, T.; Morihira, K.; Horiguchi, Y.; Kuwajima,
I. Tetrahedron 1992, 48, 6975. (c) Seto, M.; Morihira, K.; Katagiri, S.;
Furukawa, T.; Horiguchi, Y.; Kuwajima, I. Chem. Lett. 1993, 133. (d)
Morihira, K.; Seto, M.; Furukawa, T.; Horiguchi, Y.; Kuwajima, I.
Tetrahedron Lett. 1993, 34, 345. (f) Nakamura, T.; Waizumi, N.; Tsuruta,
K.; Horiguchi, Y.; Kuwajima, I. Synlett 1994, 584. (g) Seto, M.; Morihira,
K.; Horiguchi, Y.; Kuwajima, I. J. Org. Chem. 1994, 59, 3165.
treatment of 4 with t-BuLi and CuCN produced the correspond-
ing cyanocuprate, and its reaction with 3,4-epoxy-1-hexene8
gave rise to the SN2′ coupling product 5. Pyridinium dichromate
(PDC) oxidation9 of the resulting allyl alcohol 5 afforded enone
6 in 66% yield (2 steps). Conjugate addition of the lithium
enolate of ethyl isobutyrate to 6 proceeded with fairly high 1,4-
asymmetric induction (4:1) to yield 7 as the major isomer.10
(7) The starting material can be prepared in large scale from 3-isobutoxy-
2-cyclohexen-1-one in 5 steps (58% overall yield) by means of the method
developed in our laboratory16 via (1) bromination with NBS, (2) 1,2-addition
of (benzyloxy)(phenylthio)methyllithium and acidic workup, (3) acetal
exchange with CuCl2, CuO, and BnOH, (4) DIBAL reduction, and (5)
protection with TBS group.
(8) Sauleau, J.; Bouget, H.; Huet, J. C. R. Acad. Sci., Ser. C 1971, 273,
829.
(9) Corey, E. J.; Schmidt, G. Tetrahedron Lett. 1979, 399.
(10) The relative stereochemistry was inferred on the analogy of a closely
related compound of which stereochemistry was confirmed by the X-ray
analysis of its derivative, see: Takenaka, Y.; Sakai, Y.; Ohashi, Y.;
Furukawa, T.; Horiguchi, Y.; Kuwajima, I. Anal. Sci. 1993, 883. The origin
of the 1,4-asymmetric induction will be discussed in detail in the full paper.
S0002-7863(96)01094-3 CCC: $12.00 © 1996 American Chemical Society