Va r ia ble Str a tegy tow a r d Ca r ba su ga r s a n d Rela tives. 6.1
Dia ster eoselective Syn th esis of
2-Deoxy-2-a m in o-5a -ca r ba -â-L-m a n n op yr a n u r on ic Acid a n d
2-Deoxy-2-a m in o-5a -ca r ba -â-L-m a n n op yr a n ose
Gloria Rassu,*,† Luciana Auzzas,† Vincenzo Zambrano,‡ Paola Burreddu,† Luigi Pinna,‡
Lucia Battistini,§ Franca Zanardi,§ and Giovanni Casiraghi*,§
Istituto di Chimica Biomolecolare del CNR, Sezione di Sassari, Traversa La Crucca 3, I-07040 Li Punti,
Sassari, Italy, Dipartimento di Chimica, Universita` di Sassari, Via Vienna, 2, I-07100 Sassari, Italy, and
Dipartimento Farmaceutico, Universita` di Parma, Parco Area delle Scienze 27A, I-43100 Parma, Italy
giovanni.casiraghi@unipr.it
Received November 24, 2003
Efficient, total syntheses of novel 2-deoxy-2-amino-5a-carba-â-L-mannopyranuronic acid (1) and
2-deoxy-2-amino-5a-carba-â-L-mannopyranose (2), a positional stereoisomer of validamine, have
been achieved in 28% and 24% overall yields and in 12 steps and 13 steps, respectively, from 2-[(tert-
butyldimethylsilyl)oxy]furan (3) and (2S)-2,3-O-isopropylideneglyceraldehyde N-benzyl imine (4)
via two highly diastereoselective Mukaiyama aldol-related chemical maneuvers. The strategy, which
furnishes the targeted carbasugars in enantiopure forms, allows for complete control of the
configuration at all five contiguous stereocenters of the targets by utilizing the sole element of
chirality present in the aldimine progenitor 4.
In tr od u ction
As shown in Figure 1, the first component of the
construction of a generic carbapyranose F (A + B f C)
involves the use of a Lewis acid-promoted vinylogous
crossed Mukaiyama-aldol reaction between heterosub-
stituted dienoxy silanes A and suitable chiral aldehyde
progenitors B to build the stereocenters at the future
carbons 1-3, while the second decisive maneuver (D f
E) contemplates adoption of a novel, highly productive
intramolecular silylative aldolization to create the ste-
reocenters at carbons 4 and 5 and to complete the joining
of the carbocycle framework. This approach was designed
with diversity in mind, to enable chemical and stereo-
chemical modification of both the core and substituents
of the targets by varying chirality, substituents, and
carbon chain length of the chiral predecessor B as well
as the nature of the heteroatom embodied in the nucleo-
philic diene A.
To illustrate our progress, an efficient stereocontrolled
synthetic sequence to â-L-configured 5a-carbapyranuronic
δ-amino acid 1 and 5a-carbapyranosylamine 2, a posi-
tional stereoisomer of validamine,5 is described in this
paper. The method we planned to use in this study
(Figure 2) is based on a rational adaptation of our original
project and involves the use of a suitable chiral nonra-
Diversity is a leading concern in medicinal organic
chemistry, and synthetic methodologies oriented toward
this end can provide a solid foundation for the discovery
of novel pharmaceutical leads and biological probes.2
Among the more versatile of small functional organic
molecules, the carbasugar matrix emerges as an ideal
architecture for diversity, being its robust carbocyclic
structure generously adorned with various attributes
including ring size, poly-functionality, and multiple
chirality.3 In the context of a program concerned with
the exploitation of carbasugars and carbasugar amino
acids as leads for new therapeutic agents and constrained
scaffolds in peptidomimetic studies,1,4 we formulated a
general vision toward a malleable synthesis of these
entities and demonstrated that the approach could be
used to construct a vast repertoire of diverse, enantiopure
carbocycles, encompassing carbafuranoid4b,d and carba-
pyranoid4c,d structures, as well as rare medium-sized ring
congeners.1
† CNR, Sassari.
‡ Universita` di Sassari.
§ Universita` di Parma.
(1) Rassu, G.; Auzzas, L.; Pinna, L.; Zambrano, V.; Zanardi, F.;
Battistini, L.; Gaetani, E.; Curti, C.; Casiraghi, G. J . Org. Chem. 2003,
68, 5881-5885.
(2) For recent reviews on diversity-oriented synthesis, see: (a)
Schreiber, S. L. Science 2000, 287, 1964-1969. (b) Burke, M. D.;
Berger, E. M.; Schreiber, S. L. Science 2003, 302, 613-618.
(3) For recent reviews on carbasugars and relatives, see: (a) Rassu,
G.; Auzzas, L.; Pinna, L.; Battistini, L.; Curti, C. In Studies in Natural
Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier Science B.V.:
Amsterdam, The Netherlands, 2003; Vol. 29, pp 449-520. (b) Bere-
cibar, A.; Grandjean, C.; Siriwardena, A. Chem. Rev. 1999, 99, 779-
844. (c) Hudlicky, T.; Entwistle, D. A.; Pitzer, K. K.; Thorpe, A. J . Chem.
Rev. 1996, 96, 1195-1220.
(4) (a) Rassu, G.; Auzzas, L.; Pinna, L.; Battistini, L.; Zanardi, F.;
Marzocchi, L.; Acquotti, D.; Casiraghi, G. J . Org. Chem. 2000, 65,
6307-6318. (b) Rassu, G.; Auzzas, L.; Pinna, L.; Zambrano, V.;
Battistini, L.; Zanardi, F.; Marzocchi, L.; Acquotti, D.; Casiraghi, G.
J . Org. Chem. 2001, 66, 8070-8075. (c) Zanardi, F.; Battistini, L.;
Marzocchi, L.; Acquotti, D.; Rassu, G.; Pinna, L.; Auzzas, L.; Zambrano,
V.; Casiraghi, G. Eur. J . Org. Chem. 2002, 1956-1964. (d) Rassu, G.;
Auzzas, L.; Pinna, L.; Zambrano, V.; Zanardi, F.; Battistini, L.;
Marzocchi, L.; Acquotti, D.; Casiraghi, G. J . Org. Chem. 2002, 67,
5338-5342.
10.1021/jo0357216 CCC: $27.50 © 2004 American Chemical Society
Published on Web 02/11/2004
J . Org. Chem. 2004, 69, 1625-1628
1625