Arenium Ions
1163 1172
[29] N. C. Baenziger, A. D. Nelson, J. Am. Chem. Soc. 1968, 90, 6602.
[30] a) J. B. Lambert, S. Zhang, C. Stern, J. C. Huffman, Science 1993, 260,
1917; b) J. B. Lambert, S. Zhang, C. L. Stern, S. M. Ciro, Organo-
metallics 1994, 13, 2430; Recently, Lambert and Zhao synthesized the
first, truly trivalent silylium ion (trimesitylsilylium) using a different
approach: c) J. B. Lambert, Y. Zhao, Angew. Chem. 1997, 109, 389;
Angew. Chem. Int. Ed. Engl. 1997, 36, 400.
[31] R. Rathore, J. Hecht J. K. Kochi, J. Am. Chem. Soc. 1998, 120, 13278.
[32] C. A. Reed, N. L. P. Fackler, K.-C. Kim, D. Stasko, D. R. Evans,
P. D. W. Boyd, C. E. F. Rickard, J. Am. Chem. Soc. 1999, 121, 6314.
[33] For recent reviews on the silyl cation issue, see: a) C. Maerker,
P. von R. Schleyer in The Chemistry of Organosilicon Compounds,
Vol. 2 (Eds.: Z. Rappoport, Y. Apeloig), Wiley, 1998, pp. 513 556;
b) P. D. Lickiss in The Chemistry of Organosilicon Compounds, Vol. 2
(Eds.: Z. Rappoport, Y. Apeloig), Wiley, 1998, pp. 557 594; c) J. B.
Lambert, L. Kania, S. Zhang, Chem. Rev. 1995, 95, 1191 1201.
[34] For a review on silylsubstituted carbocations see: H.-U. Siehl, T.
M¸ller in The Chemistry of Organosilicon Compounds, Vol. 2 (Eds.: Y.
Apeloig, Z. Rappoport), Wiley, Chichester, 1998, Part 1, pp. 595 701.
[35] a) J. B. Lambert, Y. Zhao, J. Am. Chem. Soc. 1996, 118, 7867; b) J. B.
Lambert, Y. Zhao, J. Org. Chem. 1999, 64, 2729.
[48] All attempts to get suitable crystals for an X-ray analysis by variation
of temperature, concentration and solvent failed.
[49] For a review on silyl effects see: a) A. R. Bassindale, S. J. Glynn, P. G.
Taylor in The Chemistry of Organosilicon Compounds, Vol. 2 (Eds.: Y.
Apeloig, Z. Rappoport), Wiley, Chichester, 1998, Part 1, pp. 355 431;
b) J. B. Lambert, Tetrahedron 1990, 46, 2677.
[50] The calculated energy barrier for the ring-flip process, in 1a is smaller
(7.4 kcalmolÀ1 at B3LYP/6-311G(d,p)//B3LYP/6-31G(d) DZPVE).
We attribute this difference to the additional ring substituent in 1d,
which will certainly increase the barrier for simple steric reasons.
[51] For examples of silyl nitrilium ions see: a) G. A. Olah, S. C. Narang,
B. G. B. Gupta, R. Malhotra, J. Org. Chem. 1979, 44, 1247; b) M. Kira,
T. Hino, H. Sakurai, Chem. Lett. 1993, 555; c) S. R. Bahr, P. Boudjouk,
J. Am. Chem. Soc. 1993, 115, 4514; d) Z. Xie, D. J. Liston, T. Jelinek, V.
Mitro, R. Bau, C. A. Reed, J. Chem. Soc. Chem. Commun. 1993, 384;
e) M. Johannsen, K. A. Jorgensen, G. Helmchen, J. Am. Chem. Soc.
1998, 120, 7637.
[52] All calculations were performed with a) Gaussian 94, Revisions
C2 E2, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G.
Johnson, M. A. Robb, J. R, Cheeseman, T. Keith, G. A. Petersson,
J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakr-
zewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, A. Nanavakkara, M.
Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L.
Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S.
Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C.
Gonzalez, J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1995; b) Gaus-
sian 98, Revisions A.3 A.9, M. J. Frisch, G. W. Trucks, H. B. Schlegel,
G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A.
Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M.
Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi,
V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo,
S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K.
Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B.
Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C.
Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen,
M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A.
Pople, Gaussian, Inc., Pittsburgh PA, 1998.
[36] T. M¸ller, R. Meyer, D. Lennartz, H.-U. Siehl, Angew. Chem. 2000,
112, 3203; Angew. Chem. Int. Ed. 2000, 39, 3074.
[37] H.-U. Steinberger, T. M¸ller, N. Auner, C. Maerker, P. von R.
Schleyer, Angew. Chem. 1997, 109, 667; Angew. Chem. Int. Ed. Engl.
1997, 36, 626.
[38] For silanes R4ÀnSiHn (R aryl, alkyl; n 1 3), it has been demon-
strated that the hydride-transfer reaction[38a] proceeds through the
rate-determining formation of a silylium ion.[38b,c] For 2-alkinyl-2,6-
disilaheptanes very similar rate constants have been measured,[38d]
suggesting that in this case transient silylium ions are also formed in
the rate-determining step. a) J. Y. Corey, J. Am. Chem. Soc. 1975, 97,
3237 3238; b) H. Mayr, N. Basso, G. Hagen, J. Am. Chem. Soc. 1992,
114, 3060; c) Y. Apeloig, O. Merin-Aharoni, D. Danovich, A. Ioffe, S.
Shaik, Isr. J. Chem. 1993, 33, 387 402; d) L. Schappele, H. Mayr, T.
M¸ller unpublished results.
[39] J. B. Lambert, S. Zhang, J. Chem. Soc. Chem. Commun. 1993, 383.
[40] a) P. von R. Schleyer, P. Buzek, T. M¸ller, Y. Apeloig, H.-U. Siehl,
Angew. Chem. 1993, 105, 1558; Angew. Chem. Int. Ed. Engl. 1993, 32,
1471; b) L. Olsson, D. Cremer, Chem. Phys. Lett. 1993, 6, 360; c) L.
Pauling, Science 1994, 263, 983; d) G. A. Olah, G. Rasul, H. A.
Buchholz, X.-Y. Li, G. Sandford, G. K. S. Prakash, Science 1994, 263,
983.
[53] a) A. D. Becke, Phys. Rev. 1988, A38, 3098; b) A. D. Becke, J. Chem.
Phys. 1993, 98, 5648; c) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B.
1988, 37, 785; for monographs on density functional theory see:
d) R. G. Parr, W. Yang, Density-Functional Theory of Atoms and
Molecules, Oxford University Press, Oxford, 1989; e) W. Koch, M. C.
Holthausen, A Chemist×s Guide to Density Functional Theory, Wiley-
VCH, Weinheim, 2000.
[54] For an introduction in the methodology see: W. J. Hehre, L. Radom,
P. von R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory,
Wiley, New York, 1986.
[41] C. A. Reed, K.-C. Kim, R. D. Bolskar, L. J. M¸ller, Science 2000, 289,
101.
[42] A. Sekiguchi, T. Matsuno, M. Ichinohe, J. Am. Chem. Soc. 2000, 122,
11250.
¬
[43] M. Driess, R. Barmeyer, C. Monse, K. Merz, Angew. Chem. 2001, 113,
2393; Angew. Chem. Int. Ed. 2001, 40, 2308.
[44] a) F.-P. Kaufmann, H.-U. Siehl, J. Am. Chem. Soc. 1992, 114, 4937;
b) H.-U. Siehl, F.-P. Kaufmann, K. Hori, J. Am. Chem. Soc. 1992, 114,
9343; c) H.-U. Siehl, Pure Appl. Chem. 1995, 67, 769; d) H.-U. Siehl in
Stable Carbocation Chemistry (Eds.: G. K. S. Prakash, P. von R.
Schleyer), Wiley, New York, 1997, pp. 165 196; e) H.-U. Siehl, F.-P.
Kaufmann, Y. Apeloig, V. Braude, D. Danovich, A. Berndt, N.
Stamatis, Angew. Chem. 1991, 103, 1546; Angew. Chem. Int. Ed. Engl.
1991, 30, 1479.
[55] a) R. Ditchfield, Mol. Phys. 1974, 27, 789; b) K. Wolinski, J. F. Hilton,
P. Pulay, J. Am. Chem. Soc. 1982, 104, 5667; c) J. R. Cheeseman, G. W.
Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys. 1996, 104, 5497.
[56] a) The associate 11 is predicted to be an endergonic compound at RT,
thus DGA 3.5 kcalmolÀ1 (at B3LYP/6-31G(d)); b) The basis set
superposition error for the associate 11, as estimated by an counter-
poise calculation at the B3LYP/6-311G(d,p)//B3LYP/6 31G(d) level
of theory, is À0.6 kcalmolÀ1
.
[45] a) G. A. Olah, A. L. Berrier, L. D. Field, G. K. S. Prakash, J. Am.
Chem. Soc. 1982, 104, 1349; b) G. K. S. Prakash, V. P. Reddy, G. Rasul,
J. Casanova, G. A. Olah, J. Am. Chem. Soc. 1992, 114, 3076.
[46] a) C. Eaborn, P. D. Lickiss, S. T. Najim, W. A. Stancyk, J. Chem. Soc.
Chem. Commun. 1987, 1461; b) C. Eaborn, K. L. Jones, P. D. Lickiss, J.
Chem. Soc. Chem. Commun. 1989, 595; c) C. Eaborn, K. L. Jones,
P. D. Lickiss, J. Chem. Soc. Perkin Trans. 2 1992, 489; d) C. Eaborn,
K. L. Jones, P. D. Lickiss, W. A. Stancyk, J. Chem. Soc. Perkin Trans. 2
1993, 59; for preliminary reports on a solid-state structure of 3, R H,
see: d) P. D. Lickiss, P. C. Masangane, Abstracts of Papers, ISOS XII,
2A14, Sendai, Japan, 1999 and P. D. Lickiss, P. C. Masangane,
Abstracts of Papers, 34th Organosilicon Symposium, C-16, White
Plains, New York, 2001.
[57] For reviews see: a) P. von R. Schleyer, C. Maerker, Pure Appl. Chem.
1995, 67, 755; b) C. Maerker, J. Kapp, P. von R. Schleyer in Organo-
silicon Chemistry II: From Molecules to Materials (Eds.: N. Auner, J.
Weis), VCH, Weinheim, 1995, 329.
[58] a) T. M¸ller, Y. Zhao, J. B. Lambert, Organometallics, 1998, 17, 278;
b) E. Kraka, C. P. Sosa, J. Gr‰fenstein, D. Cremer, Chem. Phys. Lett.
1997, 9, 279.
[59] a) C.-H. Ottoson, D. Cremer, Organometallics 1996, 15, 5495; for a
short review see: b) G. A. Webb in Encyclopedia of NMR Spectros-
copy (Eds.: D. Grant, G. A. Webb), 1996, p. 4316.
[60] a) J. Gauss, Chem. Phys. Lett. 1992, 191, 614; b) J. Gauss, J. Chem.
Phys. 1993, 99, 3629; c) J. Gauss, J. F. Stanton, J. Chem. Phys. 1996,
104, 2574.
[47] Ph3CH: 1H NMR: d 7.18 7.09, 5.50; 13C NMR: d 144.4, 129.8,
128.5, 126.5, 57.4.
[61] a) H.-U. Siehl, T. M¸ller, J. Gauss, P. Buzek, P. von R. Schleyer, J. Am.
Chem. Soc. 1994, 116, 6384; b) J. F. Stanton, J. Gauss, H.-U. Siehl,
Chem. Eur. J. 2002, 8, No. 5
¹ WILEY-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002
0947-6539/02/0805-1171 $ 17.50+.50/0
1171