3396
J . Org. Chem. 1999, 64, 3396-3397
Sch em e 1
Con cise Asym m etr ic Syn th esis of r-Am in o
Acid Der iva tives fr om N-Su lfin ylim in o Ester s
Franklin A. Davis* and William McCoull
Department of Chemistry, Temple University,
Philadelphia, Pennsylvania 19122
Received February 18, 1999
Glyoxylate imines provide access to nonproteinogenic
R-amino acid derivatives through ene reactions,1 cycloaddi-
tion reactions,2,3 radical addition,4 or nucleophilic addition.5-8
However, a major drawback with glyoxylate imines is the
absence of regioselectivity. Only allylating reagents have
been found synthetically useful for such transformations.5i,6,7
We have shown that the N-sulfinyl group in sulfinimines is
an excellent imine auxiliary that activates the CdN bond
for nucleophilic addition, exerts a powerful stereodirecting
effect, and is easily deprotected in the product.9-11
In this communication we describe our initial results in
the use of chiral N-sulfinyl auxiliaries for the activation of
glyoxylate sulfinimines toward regioselective attack by
organometallic reagents.9,12 Sulfinimines 2a /b, solid and oil,
respectively, were prepared by 4 Å MS mediated condensa-
tion13 of (S)-(+)-p-toluenesulfinamide13 (1a ) or (R)-(+)-tert-
butanesulfinamide14 (1b) with ethyl glyoxylate (Scheme 1).
Initial studies with (S)-2a found that BnMgCl added regio-
selectively at the imino carbon to give (SS,2R)-3 and (SS,2S)-4
in 56% combined yield (82:18 diastereomer ratio). These
diastereomers were not separable by chromatography, and
using other solvents (toluene, THF, Et2O) failed to give
improved yields or diastereoselectivity. Oligomerization was
identified as the major competing reaction pathway.15 Pre-
complexation of (S)-2a with BF3‚OEt2 (2 equiv) significantly
reduced this oligomerization, but at the expense of yield
(31%), diastereoselectivity (63:37), and activation of addition
to sulfur to produce p-toluene benzyl sulfoxide16 (p-tolyl-
SOBn) in 36% yield. The more sterically demanding tert-
butanesulfinyl auxiliary was envisaged to reduce the like-
lihood of reaction at sulfur.
Initial results (Table 1, entries 1 and 2) for the reaction
of BnMgCl (typically 0.25 mmol) with (R)-(-)-2b indicated
some improvement in the crude diastereoselectivity. The
diastereomers were separable by chromatography, but the
major diastereomer was isolated in poor yield (24%). Sur-
prisingly, oligomerization did still occur, and significant
amounts of tert-butane benzyl sulfoxide (t-BuSOBn)17 were
isolated corresponding to reaction at sulfur despite being
adjacent to the bulky tert-butyl group. Lewis acids were
precomplexed with sulfinimine (R)-2b in an effort to increase
the desired reaction at the imine group. Ellman has used
trimethylaluminum to increase the reaction yield of orga-
nolithiums with N-tert-butanesulfinyl ketimines,18 but in our
glyoxylate sulfinimine case, yields were not improved and
oligomerization and t-BuSOBn formation were not sup-
pressed greatly although the diastereoselectivity was en-
hanced (Table 1, entries 3 and 4). It was found that BF3‚
OEt2 (1 equiv) improved the desired reaction yield and
diastereoselectivity (92:8). Use of a second equivalent of BF3‚
OEt2 further improved diastereoselectivity (94:6), and (RS,2R)-
(-)-5 was isolated in 70% yield. Oligomerization and t-BuSO-
Bn formation were virtually eliminated. In addition, 2 equiv
of BnMgCl were also found necessary for optimal yield and
diastereoselectivity (Table 1, entries 5-7). Other Lewis acids
(ZnCl2, SnCl4) gave inferior results, and BnZnCl gave no
desired product (Table 1, entries 8-10).
(1) (a) Tschaen, D. M.; Weinreb, S. M. Tetrahedron Lett. 1982, 23, 3015-
3018. (b)Tschaen, D. M.; Turos, E.; Weinreb, S. M. J . Org. Chem. 1984, 49,
5058-5064. (c) Mikami, K.; Kaneko, M.; Yajima, T. Tetrahedron Lett. 1993,
34, 4841-4842. (d) Tietze, L. F.; Bratz, M. Synthesis 1989, 439-443. (e)
Tidwell, J . H.; Buchwald, S. L. J . Am. Chem. Soc. 1994, 116, 11797-11810.
(f) Drury, W. J ., III; Ferraris, D.; Cox, C.; Young, B.; Lectka, T. J . Am. Chem.
Soc. 1998, 120, 11006-11007.
(2) For lead references on Diels-Alder reactions, see (a) Hamada, T.;
Zenkoh, T.; Sato, H.; Yonemitsu, O. Tetrahedron Lett. 1991, 32, 1649-1652.
(b) Hamley, P.; Holmes, A. B.; Kee, A.; Ladduwahetty, T.; Smith, D. F.
Synlett 1991, 29-30. (c) Bailey, P. D.; Londesbrough, D. J .; Hancox, T. C.;
Heffernan, J . D.; Holmes, A. B. J . Chem. Soc., Chem. Commun. 1994, 2543-
2544. (d) Abraham, H.; Stella, L. Tetrahedron 1992, 48, 9707-9718. (e)
Maggini, M.; Prato, M.; Scorrano, G. Tetrahedron Lett. 1990, 43, 6243-
6246. (f) Heintzelman, G. R.; Weinreb, S. M. J . Org. Chem. 1996, 61, 4594-
4599. (g) Yao, S.; J ohannsen, M.; Hazell, R. G.; J ørgensen, K. A. Angew.
Chem., Int. Ed. 1998, 37 (7), 3121-3124.
(3) For an example of a [2 + 2] cycloaddition, see Barreau, M.; Commer-
c¸on, A.; Mignani. S.; Mouysset, D.; Perfetti, P.; Stella, L. Tetrahedron 1998,
54, 11501-11516.
(4) Bertrand, M. P.; Feray, L.; Nouguier, R.; Stella, L. Synlett 1998, 780-
782.
(5) Organometallic additions: (a) Fiaud, J .-C.; Kagan, H. B. Tetrahedron
Lett. 1970, 1813- 1816. (b) Fiaud, J .-C.; Kagan, H. B. Tetrahedron Lett. 1971,
1019-1022. (c) Mu¨nster, P.; Steglich, W. Synthesis 1987, 223-225. (d)
Harwood, L. M.; Vines, K. J .; Drew, M. G. B. Synlett 1996, 1051-1053. (e)
Courtois, G.; Miginiac, L. J . Organomet. Chem. 1989, 376, 235-243. (f)
Courtois, G.; Miginiac, L. J . Organomet. Chem. 1993, 450, 33-40. (g)
Courtois, G.; Miginiac, L. J . Organomet. Chem. 1993, 452, 5-12. (h) Uno,
H.; Okada, S.; Ono, T.; Shiraishi, Y.; Suzuki, H. J . Org. Chem. 1992, 57,
1504-1513. (i) Yamamoto, Y.; Ito, W. Tetrahedron 1988, 44, 5415-5423.
(j) Bravo, P.; Crucianelli, M.; Vergani, B.; Zanda, M. Tetrahedron Lett. 1998,
39, 7771-7774.
(6) Boron reagents: (a) Yamamoto, Y.; Ito, W.; Maruyama, K. J . Chem.
Soc., Chem. Commun. 1985, 1131-1132. (b) Yamamoto, Y.; Nishii, S.;
Maruyama, K.; Komatsu, T.; Ito, W. J . Am. Chem. Soc. 1986, 108, 7778-
7786.
(7) Allyl stannanes: (a) Bellucci, C.; Cozzi, P. G.; Umani-Ronchi, A.
Tetrahedron Lett. 1995, 36, 7289-7292. (b) Bradley, G. W.; Hallet, D. J .;
Thomas, E. J . Tetrahedron: Asymmetry 1995, 6, 2579-2582 and references
therein.
(8) Carbon nucleophiles: (a) Yamamoto, Y.; Kubota, Y.; Honda, Y.; Fukui,
H.; Asao, N.; Nemoto, H. J . Am. Chem. Soc. 1994, 116, 3161-3162. (b)
Hagiwara, E.; Fujii, A.; Sodeoka, M. J . Am. Chem. Soc. 1998, 120, 2474-
2475. (c) Ferraris, D.; Young, B.; Dudding, T.; Lectka, T. J . Am. Chem. Soc.
1998, 120, 4548-4549. (d) Ferraris, D.; Young, B.; Cox, C.; Drury, W. J .,
III; Dudding, T.; Lectka, T. J . Org. Chem. 1998, 63, 6090-6091.
(9) For a review on chiral sulfinimines see: Davis, F. A.; Zhou, P.; Chen,
B.-C. Chem. Soc. Rev. 1998, 27, 13-18.
Application of our optimized conditions to other Grignard
reagents gave good diastereoselectivity and isolated yields
(Scheme 2, Table 2). Sulfinimine (R)-2b was precomplexed
with 2 equiv BF3‚OEt2 in CH2Cl2 at -78 °C for 5 min and
(13) Davis, F. A.; Zhang, Y.; Andemichael, Y.; Fang, T.; Fanelli, D. L.;
Zhang, H. J . Org. Chem., 1999, 64, 1403-1406. Attempted condensation
using Ti(OEt)4 did not lead to the formation of (R)-2b.
(14) Cogan, D. A.; Liu, G.; Kim, K.; Backes, B. J .; Ellman, J . A. J . Am.
Chem. Soc. 1998, 120, 8011-8019.
(15) Dimers and trimers of 3/4 were identified by MS where the amine
functionality had reacted with the ester group of another molecule of 3/4.
(16) Stirling, C. J . M. J . Chem. Soc. 1963, 5741-5745.
(17) Mislow, K.; Green, M. M.; Raban, M. J . Am. Chem. Soc. 1965, 87,
2761-2762.
(10) Enders, D.; Reinhold, U. Tetrahedron: Asymmetry 1997, 8, 1895-
1946.
(11) Bloch, R. Chem. Rev. 1998, 98, 1407-1438.
(12) For a review on N-sulfonyl imines of glyoxylates see: Weinreb, S.
M. in Top. Curr. Chem. 1997, 190, 131-184.
(18) Cogan, D. A.; Ellman, J . A. J . Am. Chem. Soc. 1999, 121, 268-269.
10.1021/jo990303f CCC: $18.00 © 1999 American Chemical Society
Published on Web 04/27/1999