Please do not adjust margins
Organic & Biomolecular Chemistry
Page 4 of 6
COMMUNICATION
ChemComm
(a)
DOI: 10.1039/C9OB00625G
oxidative formal [3+2] annulation, which allows smooth
participation of a broad range of carbonyls including cycloketones
and aliphatic aldehydes. The application of this method was further
demonstrated by the effective gram-scale reaction and readily viable
late-stage modification of the resultant adducts.
H
N
O
HO
RB (1 mol%), AlCl3 (1 equiv)
H
N
SH
+
S
N
CH3CN, O2, rt, 48 h
additive (2.0 equiv)
N
3a
1a
2a
TEMPO:
BHT:
12%
32%
0
1,1-diphenylethene:
DABCO:
23%
ACKNOWLEDGMENT
(b)
This work was supported by the National Natural Science
Foundation of China (21502161, 21602187), the Collaborative
Innovation Center of New Chemical Technologies for
Environmental Benignity and Efficient Resource Utilization,
Scientific Research Fund of Hunan Provincial Education Department
(16B251), and Hunan Provincial Natural Science Foundation of
China (2017JJ3299).
Notes and references
1
(a) A. Dondoni, Angew. Chem. Int. Ed., 2008, 47, 8995-8997; (b) D. A.
Boyd, Angew. Chem. Int. Ed., 2016, 55, 15486-15502.
Figure 3. Key mechanistic findings. (a) Radical trapping reactions;
(b) Fluorescence quenching experiments (Stern–Volmer studies).
2
3
(a) T. B. Nguyen, Adv. Synth. Catal. , 2017, 359, 1066–1130; (b) T.
Chivers and P. J. Elder, Chem. Soc. Rev., 2013, 42, 5996-6005; (c) H. Liu
and X. Jiang, Chem. Asian. J., 2013, 8, 2546-2563.
On the basis of the experimental results and previous reports,4g, 10b,
a plausible reaction mechanism was proposed (Figure 4).
(a) M. Yan, Y. Kawamata and P. S. Baran, Angew. Chem. Int. Ed., 2018,
57, 4149-4155; (b) S. Mohle, M. Zirbes, E. Rodrigo, T. Gieshoff, A.
Wiebe and S. R. Waldvogel, Angew. Chem. Int. Ed., 2018, 57, 6018-6041;
(c) S. Tang, Y. Liu and A. Lei, Chem, 2018, 4, 27-45; (d) S. R.
Waldvogel, S. Lips, M. Selt, B. Riehl and C. J. Kampf, Chem. Rev., 2018,
118, 6706-6765; (e) G. Zhang, C. Liu, H. Yi, Q. Meng, C. Bian, H. Chen,
J. X. Jian, L. Z. Wu and A. Lei, J. Am. Chem. Soc., 2015, 137, 9273-9280.
(a) T. P. Yoon, M. A. Ischay and J. Du, Nat. Chem., 2010, 2, 527-532; (b)
J. Xuan and W. J. Xiao, Angew. Chem., Int. Ed., 2012, 51, 6828-6838; (c)
C. K. Prier, D. A. Rankic and D. W. MacMillan, Chem. Rev., 2013, 113,
5322-5363; (d) N. Corrigan, S. Shanmugam, J. Xu and C. Boyer, Chem.
Soc. Rev., 2016, 45, 6165-6212; (e) D. C. Fabry and M. Rueping, Acc.
Chem. Res., 2016, 49, 1969-1979; (f) C. Bian, A. K. Singh, L. Niu, H. Yi
and A. Lei, Asian J. Org. Chem., 2017, 6, 386-396; (g) W. Guo, K. Tao,
W. Tan, M. Zhao, L. Zheng and X. Fan, Org. Chem. Front., 2019,
10.1039/c8qo01353e.
10d
Initially, Rose Bengal (RB) was converted into the excited RB*
under visible-light irradiation. Then, a single electron transfer (SET)
from thiol 1a to RB* afforded the thiyl radical ion A, which
underwent a deprotonation to form radical B. Subsequently, the
addition of thiyl radical B to enol C, in situ activated by Lewis acid,
led to the formation of alkyl radical D. Furthermore, a SET process
and deprotonation occurred again to give sulfide intermediate E,
which underwent nucleophilic annulations and workup to afford the
final product 3a. The reductive photocatalyst RB• would transfer to
catalytically active catalyst via SET with O2 and light stimulation.
4
LA
O
O
LA
- H+
2a
C
5
6
7
P. Wang, S. Tang, P. Huang and A. Lei, Angew. Chem. Int. Ed., 2017, 56,
3009-3013.
H
N
H
N
H
N
HO2
S
O
LA
S
O
O
LA
LA
S
SET
-H2O2
N
W. Guo, W. Tan, M. Zhao, K. Tao, L.-Y. Zheng, Y. Wu, D. Chen and X.-
L. Fan, RSC Adv., 2017, 7, 37739-37742.
N
N
E
D
B
HO2
O2
H+
H. Cao, J. Yuan, C. Liu, X. Hu and A. Lei, RSC Adv., 2015, 5, 41493-
41496.
H
N
H
N
SH
8
9
Y. Li, D. Liu, C. Liu and A. Lei, Chem. Asian J., 2016, 11, 2246-2249.
X. Zhu, X. Xie, P. Li, J. Guo and L. Wang, Org. Lett., 2016, 18, 1546-
1549.
S
hv
N
RB*
SET
RB
N
A
F
RB
- LA
H
O2
N
10 (a) Q. Lu, H. Wang, P. Peng, C. Liu, Z. Huang, Y. Luo and A. Lei, Org.
Chem. Front., 2015, 2, 908-912; (b) S. Tang, K. Liu, C. Liu and A. Lei,
Chem. Soc. Rev., 2015, 44, 1070-1082; (c) Y. Yuan, Y. Chen, S. Tang, Z.
Huang and A. Lei, Sci. Adv. , 2018, 4, eaat5312; (d) H. Cui, W. Wei, D.
Yang, Y. Zhang, H. Zhao, L. Wang and H. Wang, Green Chem., 2017, 19,
3520-3524.
SH
3a
N
O2
1a
Figure 4 Possible reaction mechanism.
In summary, a photocatalytically aerobic reaction system with
visible light has been developed for the efficient dehydrogenative
4 | J. Name., 2013, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins