M. I. Burguete et al. / Tetrahedron Letters 43 (2002) 1817–1819
1819
Table 1. Percentages of intramolecularly H-bonded struc-
tures found in the Molecular Dynamics simulations for
compounds 5–8a
Compound
% of H-bonded structures
5
6
7
8
3b
0
19c
30c
a OPLS/AA force-field, GB/SA simulation of solvent, simulation
time=2000 ps, 100 structures were sampled, H-bond presence was
determined according to the standard cutoffs.
Figure 3. Conformations of the central propylenediamine unit
of 7 and butylenediamine unit of 8 as found in the lowest
energy structures obtained by molecular mechanics (OPLS/
AA).
b H-bond between benzylic amino groups.
c H-bond between central amino groups.
H-bonding in these macrocycles. In order to illustrate
graphically the notable effect that this constraint
imposes to the conformational space of the macrocy-
cles, a superimposition of the structures sampled during
the molecular dynamics simulation for macrocycles 7
and 8 is shown in Fig. 2. It seems clear that this
restricted mobility correlates with the spectroscopic
data mentioned above.
This can be explained due to the strong electrostatic
repulsion in the would exist at the transition state for
the exchange process depicted in Scheme 1 and the
stiffening that protonation causes resulting in highly
preorganized hosts.
Acknowledgements
More information can be obtained by a detailed analy-
sis of the lowest energy structures obtained after exten-
sive Monte Carlo conformational search. As it can be
seen in Fig. 3, for both compounds 7 and 8 the most
stable structure presents an intramolecular H-bond
bridging the central amino groups. The H-bond in 8 is
specially stable due to the formation of a seven-mem-
bered ring that permits an almost linear disposition of
the three atoms involved, which, in addition, results in
shorter bond distances that in the case of 7. For the
latter molecule, the corresponding six-membered cyclic
disposition implies a H-bond disposition distorted from
the ideal 180° angle.
We are grateful to CICYT (BQV2000-1424-C03) for
financial support.
References
1. Bradshaw, J. S.; Krakowiak, K. E.; Izatt, R. M. Aza-
crown macrocycles; John Wiley & Sons: New York, 1993.
2. (a) Steed, J. W.; Atwood, J. L. Supramolecular Chemistry;
John Wiley & Sons: Chichester, UK, 2000; (b) Kimura, E.
Tetrahedron 1992, 6175; (c) Izatt, R.; Pawlak, K.; Brad-
saw, J. S. Chem. Rev. 1995, 95, 2529; (d) Izatt, R. M.;
Pawlak, K.; Bradshaw, J. S. Chem. Rev. 1991, 91, 1721; (e)
Supramolecular Chemistry of Anions; Bianchi, A.; Bow-
man-James, K.; Garc´ıa-Espan˜a, E., Eds.; John Wiley &
Sons: Chichester, UK, 1997; (f) Bazzicalupi, C.; Bencini,
A.; Bianchi, A.; Cechi, M.; Escuder, B.; Fusi, V.; Garc´ıa-
Espan˜a, E.; Giorgi, C.; Luis, S. V.; Maccagni, G.;
Marcelino, V.; Paoletti, P.; Valtancoli, B. J. Am. Chem.
Soc. 1999, 121, 6807.
Finally, when fully protonated receptors 5–8 were stud-
ied in D2O, all the systems presented a 1H NMR
spectrum with an AB pattern for the benzylic signals.
3. (a) Bencini, A.; Burguete, M. I.; Garc´ıa-Espan˜a, E.; Luis,
S. V.; Miravet, J. F.; Soriano, C. J. Org. Chem. 1993, 58,
4749; (b) Burguete, M. I.; D´ıaz, P.; Garc´ıa-Espan˜a, E.;
Luis, S. V.; Miravet, J. F.; Querol, M.; Ram´ırez, J. A.
Chem. Commun. 1999, 649.
4. (a) Rebek, J.; Wattley, R. W.; Costello, T.; Gadwood, R.;
Marshall, L. J. Am. Chem. Soc. 1980, 102, 7398; (b)
Gavin˜a, F.; Luis, S. V.; Costero, A. M.; Burguete, M. I.;
Rebek, J. J. Am. Chem. Soc. 1988, 110, 7140.
5. (a) Mohamadi, F.; Richards, N. G. J.; Hendrickson, T.;
Still, W. C. J. Comput. Chem. 1990, 11, 440; (b) For an
example of the use of MACROMODEL in the study
intramolecular H-bonding: McDonald, D. Q.; Still, W. C.
J. Am. Chem. Soc. 1994, 116, 11550.
Figure 2. Superimposition of 100 structures sampled during
the Molecular Dynamics simulation carried out for com-
pounds 7 and 8.