D
N. Yao et al.
Letter
Synlett
In conclusion, a range of multifunctional magnetic MOF
nanomaterials with various mass ratios of MIL-53(Fe) to
magnetic SiO2@NiFe2O4 nanoparticles were synthesized,
characterized, and used as novel heterogeneous catalysts
for the Knoevenagel condensation. The presence of syner-
gistic effects between the Lewis acid iron sites of MIL-
53(Fe) and the basic sites of magnetic SiO2@NiFe2O4
nanoparticles in the nanomaterials makes them suitable as
active catalysts for the condensation. Our studies showed
that the multifunctional cooperative nanocatalyst MIL-
53(Fe)@SiO2@NiFe2O4(1.0) has a higher activity than other
catalysts in this reaction. The present method provides an
operationally simple, highly efficient, and environmentally
benign alternative for the Knoevenagel condensation. Fur-
thermore, our heterogeneous catalyst shows excellent reus-
ability and can be reused for five runs with negligible loss
of its activity. The advantages of the present method are the
high catalytic activity, easy workup, excellent reusability,
and green and environmentally benign nature.
(14) Xu, G.; Wang, L.; Li, M.; Tao, M.; Zhang, W. Green Chem. 2017, 19,
5818.
(15) Calvino-Casilda, V.; Olejniczak, M.; Martín-Aranda, R. M.;
Ziolek, M. Microporous Mesoporous Mater. 2016, 224, 201.
(16) Varadwaj, G. B. B.; Rana, S.; Parida, K. M. Dalton Trans. 2013, 42,
5122.
(17) Franconetti, A.; Domínguez-Rodríguez, P.; Lara-García, D.;
Prado-Gotor, R.; Cabrera-Escribano, F. Appl. Catal., A 2016, 517,
176.
(18) Li, Q.; Wang, X.; Yu, Y.; Chen, Y.; Dai, L. Tetrahedron 2016, 72,
8358.
(19) Xu, W.; Thapa, K. B.; Ju, Q.; Fang, Z.; Huang, W. Coord. Chem. Rev.
2018, 373, 199.
(20) Schneemann, A.; Bon, V.; Schwedler, I.; Senkovska, I.; Kaskel, S.;
Fischer, R. A. Chem. Soc. Rev. 2014, 43, 6062.
(21) Zhou, W.; Wu, Y.-P.; Wang, X.; Tian, J.-W.; Huang, D.-D.; Zhao, J.;
Lan, Y.-Q.; Li, D.-S. CrystEngComm 2018, 20, 4804.
(22) Zhang, Y.; Wang, Y.; Liu, L.; Wei, N.; Gao, M.-L.; Zhao, D.; Han,
Z.-B. Inorg. Chem. 2018, 57, 2193.
(23) Ezugwu, C. I.; Mousavi, B.; Asraf, M. A.; Luo, Z.; Verpoort, F.
J. Catal. 2016, 344, 445.
(24) Rambabu, D.; Ashraf, M.; Pooja; Gupta, A.; Dhir, A. Tetrahedron
Lett. 2017, 58, 4691.
(25) Opanasenko, M.; Dhakshinamoorthy, A.; Shamzhy, M.;
Nachtigall, P.; Horáček, M.; Garcia, H.; Čejka, J. Catal. Sci. Technol.
2013, 3, 500.
(26) Zhang, L.; He, Y.; Yang, X.; Yuan, H.; Du, Z.; Wu, Y. Chem. Eng. J.
(Amsterdam, Neth.) 2015, 278, 129.
Funding Information
This work was supported by the National Natural Science Foundation
of China (21506115) and Excellent Dissertation of China Three Gorges
University (2018SSPY055).
N
ati
o
n
a
lNaturalS
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
of
C
h
i
n
a
(2
1
5
0
6
1
1
5)
(27) Baig, R. B. N.; Nadagouda, M. N.; Varma, R. S. Coord. Chem. Rev.
2015, 287, 137.
(28) Babazadeh, M.; Hosseinzadeh-Khanmiri, R.; Abolhasani, J.;
Ghorbani-Kalhor, E.; Hassanpour, A. RSC Adv. 2015, 5, 19884.
(29) Yang, Q.; Zhu, Y.; Luo, B.; Lan, F.; Wu, Y.; Gu, Z. Nanoscale 2017,
9, 527.
(30) Wang, H.; Zhang, W.; Zhang, F.; Cao, Y.; Su, W. J. Magn. Magn.
Mater. 2008, 320, 1916.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orti
n
gInformati
o
n
(31) Liu, Y.; Cherkasov, N.; Gao, P.; Fernández, J.; Lees, M. R.; Rebrov,
E. V. J. Catal. 2017, 355, 120.
References and Notes
(32) Wang, G.-H.; Lei, Y.-Q.; Song, H.-C. Anal. Methods 2014, 6, 7842.
(33) Yang, Q.; Wang, J.; Chen, X.; Yang, W.; Pei, H.; Hu, N.; Li, Z.; Suo,
Y.; Li, T.; Wang, J. J. Mater. Chem. A 2018, 6, 2184.
(34) Parmekar, M. V.; Salker, A. V. RSC Adv. 2016, 6, 108458.
(35) Blanco-Gutierrez, V.; Virumbrales, M.; Saez-Puche, R.; Torralvo-
Fernandez, M. J. J. Phys. Chem. C 2013, 117, 20927.
(36) Shigematsu, A.; Yamada, T.; Kitagawa, H. J. Am. Chem. Soc. 2011,
133, 2034.
(1) Vekariya, R. H.; Patel, H. D. Synth. Commun. 2014, 44, 2756.
(2) Krawczyk, H.; Albrecht, Ł. Synthesis 2005, 2887.
(3) Raytchev, P. D.; Roussi, L.; Dutasta, J. P.; Martinez, A.; Dufaud, V.
Catal. Commun. 2012, 28, 1.
(4) Wang, H.; Wang, C.; Yang, Y.; Zhao, M.; Wang, Y. Catal. Sci. Tech-
nol. 2017, 7, 405.
(5) Pullabhotla, V. S. R. R.; Rahman, A.; Jonnalagadda, S. B. Catal.
Commun. 2009, 10, 365.
(37) Dong, W.; Liu, X.; Shi, W.; Huang, Y. RSC Adv. 2015, 5, 17451.
(38) 2-Benzylidenemalononitrile; Typical Procedure
A mixture of PhCHO (5 mmol), malononitrile (5 mmol), EtOH
(15 mL), and MIL-53(Fe)@SiO2@NiFe2O4(1.0) (0.1 g) was mag-
netically stirred at r.t. until the reaction was complete (TLC).
The catalyst that precipitated out from the mixture was col-
lected by using an external magnet, washed with EtOH, and
reused for consecutive cycles under the same reaction condi-
tions. The product was crystallized from EtOH to give a white
solid; yield: 755 mg (98%); mp 83.8–84.1 °C. 1H NMR (400 MHz,
CDCl3): = 7.47–7.64 (m, 3 H, Ar-H), 7.78 (s, 1 H, CH), 7.85–7.94
(m, 2 H, Ar-H). MS: m/z [M + H]+ calcd for C10H7N2: 155.1;
found: 155.06; Anal. Calcd for C10H6N2: C, 77.87; H, 3.90; N,
18.15. Found: C, 77.91; H, 3.92; N, 18.17.
(6) Sharma, P.; Sasson, Y. RSC Adv. 2017, 7, 25589.
(7) Tuci, G.; Luconi, L.; Rossin, A.; Berretti, E.; Ba, H.; Innocenti, M.;
Yakhvarov, D.; Caporali, S.; Pham-Huu, C.; Giambastiani, G. ACS
Appl. Mater. Interfaces 2016, 8, 30099.
(8) Li, G.; Xiao, J.; Zhang, W. Green Chem. 2012, 14, 2234.
(9) Şen, B.; Akdere, E.-H.; Şavk, A.; Gültekin, E.; Paralı, Ö.; Göksu, H.;
Şen, F. Appl. Catal., B 2018, 225, 148.
(10) Shirotori, M.; Nishimura, S.; Ebitani, K. J. Mater. Chem. A 2017, 5,
6947.
(11) del Hierro, I.; Pérez, Y.; Fajardo, M. Mol. Catal. 2018, 450, 112.
(12) Boroujeni, K. P.; Jafarinasab, M. Chin. Chem. Lett. 2012, 23, 1067.
(13) Elhamifar, D.; Kazempoor, S. J. Mol. Catal. A: Chem. 2016, 415,
74.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–D