488
L. Palombi / Catalysis Communications 12 (2011) 485–488
[2] (a) E.I. Marko, in: B.M. Trost, I. Fleming (Eds.), Comprehensive Organic Synthesis,
vol. 3, Pergamon, Oxford, 1991, pp. 913–927;
(b) J.B. Sweeney, A. Tavassoli, N.B. Carter, J.F. Hayes, Tetrahedron 58 (2002)
10113–101268 and references cited herein;
(c) J.A. Workman, N.P. Garrido, J. Sançon, E. Roberts, H.P. Wessel, J.B. Sweeney, J.
Am. Chem. Soc. 127 (2005) 1066–1067;
(d) B. Drouillat, F. Couty, J. Marrot, Synlett. 5 (2009) 767–770.
[3] K.W. Glaeske, F.G. West, Org. Lett. 1 (1999) 31–33.
[4] A diradical mechanism does not prejudice a totally enantioselective [1,2]-shift if the
translation occurs without the detachment of the group involved in the migration,
see: (a) S. Hanessian, M. Mauduit, Angew. Chem. Int. Ed., 40 (2001), 3810–3813. (b)
M.-H. Goncalves-Farbos, L. Vial, J. Lacour, Chem. Commun., (2008) 829–831.
[5] (a) E. Tayama, S. Nanbara, T. Nakai, Chem. Lett. 35 (2006) 478–479;
(b) E. Tayama, H. Kimura, Angew. Chem. Int. Ed. 46 (2007) 8869–8871;
(c) E. Tayama, K. Orihara, H. Kimura, Org. Biomol. Chem. 6 (2008) 3673–3680.
[6] (a) T. Shono, Electroorganic Chemistry as a New Tool in Organic Synthesis,
Springer-Verlag, Berlin Heidelberg New York Tokyo, 19848, and references
cited herein;
(b) H. Lund, in: H. Lund, O. Hammerich (Eds.), Organic Electrochemistry, Marcel
Dekker, New York, 2001;
Scheme 4. Proposed mechanism for electrochemically-promoted Stevens rearrange-
(c) W.A. Mowers, J.V. Crivello, Polym. Mater. Sci. Eng. 81 (1999) 479–480.
[7] K.L. Vieira, M.S. Mubarak, D.G. Peters, J. Am. Chem. Soc. 106 (1984) 5372–5373;
Hall E.A.H., Simonet J., Lund H., J. Electroanal. Chem. 100 (1979) 197–203;
Benders J., Kadys V., Lavrinovics E., Stradins J., Electrochim. Acta 31 (1986)
1369–1379.
[8] Y. Okazaki, F. Ando, J. Koketsu, Bull. Chem. Soc. Jpn 76 (2003) 2155–2165;
Y. Okazaki, F. Ando, J. Koketsu, Bull. Chem. Soc. Jpn 77 (2004) 1687–1695;
Y. Okazaki, A. Takeuchi, Y. Ninomiya, J. Koketsu, Electrochem. Tokyo Jpn 73
(2005) 798–806;
Y. Okazaki, T. Asai, F. Ando, J. Koketsu, Chem. Lett. 35 (2006) 98–99.
[9] P.E. Iversen, Tetrahedron Lett. 1 (1971) 55–56.
[10] T. Shono, T. Akazawa, M. Mitani, Tetrahedron 29 (1973) 817–821.
[11] L. Palombi, M. Feroci, M. Orsini, A. Inesi, Chem. Commun. (2004) 1846–1847;
T. Caruso, M. Feroci, A. Inesi, M. Orsini, A. Scettri, L. Palombi, Adv. Synth. Catal.
348 (2006) 1942–1947;
ment of proline derivatives in DMSO.
compound 2b with the highest enantiopurity level reported so far.
Furthermore, thanks to the ionic character of the substrate and the
features of the electrochemical protocol the use of environmental
armful supporting electrolytes, metals and base reagents was avoided.
We are currently investigating the scope of such electrochemical
methodology for the rearrangement of other chiral synthetically
interesting -onium salts.
Acknowledgments
M. Feroci, M. Orsini, L. Palombi, A. Inesi, Green Chem. 9 (2007) 323–325;
L. Palombi, C. Bocchino, T. Caruso, R. Villano, A. Scettri, Catal. Commun. 10 (2008)
321–324.
The authors thank Dr. Tonino Caruso for his most valuable
contribution to the voltammetry experiments and discussions. The
authors also thank the referees of this work for useful discussions. This
work was supported by research grants from MIUR.
[12] E.J. Corey, J.O. Link, J. Org. Chem. 56 (1991) 442–447.
[13] UV–vis spectra have been also collected in situ by using spectroelectrochemical
tecniques: these results will be published elsewhere. For literature data on the UV
spectrum of the aqueous solution of iodine see: N. V. Guzenko, O. E. Voronina, N. N.
Vlasova, E. F. Voronin, J. Appl. Spectros., 71 (2004) 151–155.
[14] B. Gorodetsky, R. Ramnial, N.R. Branda, J.A.C. Clyburne, Chem. Commun. (2004) 1972.
[15] G. Ghigo, S. Cagnina, A. Maranzana, G. Tonachini, J. Org. Chem. 75 (2004)
3608–3617.
References
[1] For a recent review on sigmatropic rearrangements of onium ylides, see: J.B.
Sweeney, Chem. Soc. Rev., 38 (2009) 1027–1038.