2828 Organometallics, Vol. 21, No. 14, 2002
Communications
ferrocenes in nitroalkane solvents in the presence of
strong acids, such as HClO4 or AlCl3, has been reported.6
Other processes resulting in the flipping over of a
cyclopentadienyl ligand have been observed in metal-
locene systems of the lanthanides7 and group 38 and
group 49 metals. A number of the group 4 ring-flipping
processes are photochemically initiated.9a-g Also of
particular note, Hollis and Fu have independently
described a diphosphazirconocene in which a phosphole
flips over via a proposed intermediate in which the
phosphole is coordinated by only the P atom.10
Herberich and co-workers have described systems in
which cyclopentadienyl rings are exchanged between
(3) To a solution of 1-(diphenylphosphino)indene (1.8 g, 6.0 mmol)
in tetrahydrofuran (50 mL) at -80 °C was added a solution of n-BuLi
(3.75 mL, 1.6 M, 6.0 mmol). After 2 h, FeCl2 (0.38 g, 3 mmol) was added
and the reaction mixture was stirred for 12 h at ambient temperature
to give a dark green solution. The solvent was removed in vacuo, and
the residue was loaded onto a Celite column and washed with diethyl
ether (to remove unreacted 1-(diphenylphosphino)indene). Subsequent
elution with dichloromethane yielded 1.26 g (64%) of rac-1 as a dark
blue powder. Dark blue crystallographic-quality crystals were obtained
by recrystallization from CH2Cl2/diethyl ether. Data for rac-1: 1H NMR
F igu r e 2. Conversion of meso-1 to rac-1 in tetrahydrofu-
ran at various temperatures: 23 °C, k1 ) [1.59(3)] × 10-5
s-1; 30 °C, k1 ) [3.01(9)] × 10-5 s-1; 40 °C, k1 ) [5.89(16)]
× 10-5 s-1; 50 °C, k1 ) [1.20(4)] × 10-4 s-1
.
3
3
(CDCl3) δ 3.07 (d, J HH ) 2 Hz, 2H, H-2), 4.92 (d, J HH ) 2 Hz, 2H,
H-3), 6.4-7.4 (m, 28H, H4-7 and Ph); 13C{1H} NMR (CDCl3) δ 66.1
3
1
2
metal centers via triple-decker sandwich intermediates
and which result in coordination of the rings by the
other face. This involves an intermolecular exchange
process.11 That such a process may occur in some
ferrocene systems is evidenced by the cyclopentadienyl-
exchange reactions between ferrocenes, using the Lewis
acid AlCl3,12 and the synthesis of [Cp3Fe2]+ by Kudi-
nov.13 Other examples of cyclopentadienyl-transfer reac-
tions from ferrocenes include the following: transfer of
acylferrocenes to Re,14 a redistribution reaction between
ferrocene and 1,1′-dimethylferrocene at 250 °C after 3
days,15 and the synthesis of ruthenocene from ferrocene
and RuCl3 at 250 °C.16
(d, J PC ) 4 Hz, C-3), 68.1 (d, J PC ) 9 Hz, C-1), 72.0 (d, J PC ) 4 Hz,
2
3
C-2), 90.3 (d, J PC ) 4 Hz, C-9), 91.0 (d, J PC ) 25 Hz, C-8), 122.5 (s,
C-5), 122.9 (s, C-6), 123.6 (s, C-4), 124.1 (d, 3J PC ) 9 Hz, C-7), 127.6 (s,
p-Ph), 128.0 (d, 3J PC ) 5 Hz, m-Ph), 128.3 (d, 3J PC ) 8 Hz, m-Ph), 129.3
2
2
(s, p-Ph), 131.7 (d, J PC ) 18 Hz, o-Ph), 135.2 (d, J PC ) 22 Hz, o-Ph),
1
1
136.7 (d, J PC ) 7 Hz, ipso-Ph), 139.8 (d, J PC ) 10 Hz, ipso-Ph);
31P{1H} NMR (CDCl3) δ -22.26 (s).
(4) Crystal data for rac-1: C42H32FeP2; Mr ) 654.47; orthorhombic,
Pbcn; a ) 12.959(6) Å, b ) 12.396(5) Å, c ) 19.296(8) Å, V ) 3100(2)
Å3, Z ) 4, F(000) ) 1360, Dcalcd ) 1.402 g cm-3, Mo KR radiation (λ )
0.710 73 Å), µ ) 0.6221 mm-1, T ) 168(2) K; θ range 2.11-26.44°;
3142 unique reflections, 204 parameters; R1 ) 0.0351, wR2 ) 0.0783
(I > 2σ(I)), largest difference peak and hole 0.308 and -0.427 e Å-3
.
Data were collected on a Siemens P4 Smart CCD area detector; the
structure was solved by direct methods and refined by full-matrix least-
squares methods on F2.
(5) The same procedure as for the preparation of rac-1 was used,
except that the reaction solution is stirred for only 2 h before the
solvent is removed in vacuo. Yields obtained for mixtures do not vary
significantly from that obtained for the rac isomer. Data for meso-1:
The isomerization of meso-1 to rac-1 was followed by
31P NMR spectroscopy at a variety of temperatures
(Figure 2). The isomerization is first order in ferrocene
concentration, and the activation parameters were
found to be ∆Hq ) 57 ( 4 kJ mol-1 and ∆Sq ) -145 (
15 J mol-1 K-1. In neat tetrahydrofuran, the rate is
[1.59(3)] × 10-5 s-1 at 23 °C. During the synthesis of 1,
however, the rate was found to be [3.60(9)] × 10-5 s-1
([1] ) 0.0605 M, T ) 23 °C). Extrapolation back to t )
0 gives an initial rac to meso ratio of 55:45. Possible
causes of the rate increase include excess indenyldiphen-
ylphosphine and dissolved salts. It was found that
additional indenyldiphenylphosphine did not increase
the rate, whereas addition of LiCl increased the rate
significantly (at [LiCl] ) 0.081 M and [1] ) 0.020 M, k1
3
3
1H NMR (CDCl3) δ 3.48 (d, J HH ) 2 Hz, 2H, H-2), 3.81 (d, J HH ) 2
Hz, 2H, H-3), 6.88-7.53 (m, 28H, H4-7 and Ph); 13C{1H} NMR (CDCl3)
1
δ 64.4 (s, C-3), 66.9 (d, J PC ) 13 Hz, C-1), 74.5 (s, C-2), 90.3 (s, C-9),
91.6 (d, 2J PC ) 22 Hz, C-8), 124.3 (s, C-5), 124.9 (s, C-6), 127.7 (s, p-Ph),
3
3
127.9 (s, C-4), 128.0 (d, J PC ) 3 Hz, m-Ph), 128.1 (d, J PC ) 10 Hz,
3
2
C-7), 128.2 (d, J PC ) 8 Hz, m-Ph), 129.0 (s, p-Ph), 132.4 (d, J PC ) 20
2
1
Hz, o-Ph), 135.4 (d, J PC ) 21 Hz, o-Ph), 137.4 (d, J PC ) 11 Hz, ipso-
Ph), 139.1 (d, J PC ) 14 Hz, ipso-Ph); 31P{1H} NMR (CDCl3) δ -26.53
1
(s).
(6) (a) Falk, H.; Lehner, H.; Paul, J .; Wagner, U. J . Organomet.
Chem. 1971, 28, 115. (b) Slocum, D. W.; Tucker, S. P.; Engelmann, T.
R. Tetrahedron Lett. 1970, 621.
(7) (a) Giardello, M. A.; Conticello, V. P.; Brard, L.; Sabat, M.;
Rheingold, A. L.; Stern, C. L.; Marks, T. J . J . Am. Chem. Soc. 1994,
116, 10212. (b) Haar, C. M.; Stern, C. L.; Marks, T. J . Organometallics
1996, 15, 1765. (c) Hultzsch, K. C.; Spaniol, T. P.; Okuda, J . Organo-
metallics 1997, 16, 4845.
(8) Yoder, J . C.; Day, M. W.; Bercaw, J . E. Organometallics 1998,
17, 4946.
(9) (a) Wild, F. R. W. P.; Zsolnai, L.; Huttner, G.; Brintzinger, H.-
H. J . Organomet. Chem. 1982, 232, 233. (b) Wiesenfeldt, H.; Reinmuth,
A.; Barsties, E.; Evertz, K.; Brintzinger, H.-H. J . Organomet. Chem.
1989, 369, 359. (c) Schmidt, K.; Reinmuth, A.; Rief, U.; Diebold, J .;
Brintzinger, H.-H. Organometallics 1997, 16, 1724. (d) Kaminsky, W.;
Schauwienold, A.-M.; Freidanck, F. J . Mol. Catal. A 1996, 112, 37. (e)
Rheingold, A. L.; Robinson, N. P.; Whelan, J .; Bosnich, B. Organome-
tallics 1992, 11, 1869. (f) Collins, S.; Hong, Y.; Taylor, N. J . Organo-
metallics 1990, 9, 2695. (g) Vitz, E. D.; Wagner, P. J .; Brubaker, C.
H., J r. J . Organomet. Chem. 1976, 107, 301. (h) Ringwald, M.;
Stuermer, R.; Brintzinger, H.-H. J . Am. Chem. Soc. 1999, 121, 1524.
(i) Diamond, G. M.; Rodewald, S.; J ordan, R. F. Organometallics 1995,
14, 5. (j) Christopher, J . N.; Diamond, G. M.; J ordan, R. F.; Petersen,
J . L. Organometallics 1996, 15, 4038. (k) Diamond, G. M.; J ordan, R.
F.; Petersen, J . L. Organometallics 1996, 15, 4045. (l) Diamond, G.
M.; J ordan, R. F.; Petersen, J . L. Organometallics 1996, 15, 4030.
(10) (a) Hollis, T. K.; Wang, L.-S.; Tham, F. J . Am. Chem. Soc. 2000,
122, 11737. (b) Bellemin-Laponnaz, S.; Lo, M. M. C.; Peterson, T. H.;
Allen, J . M.; Fu, G. C. Organometallics 2001, 20, 3453.
(11) (a) Herberich, G. E.; J ansen, U. J . Organometallics 1995, 14,
834. (b) Herberich, G. E.; Dunne, B. J .; Hessner, B. Angew. Chem. 1989,
101, 798. (c) Herberich, G. E.; Bueschges, U.; Dunne, B. J .; Hessner,
B.; Klaff, N.; Koeffer, D. P. J .; Peters, K. J . Organomet. Chem. 1989,
372, 53. (d) Herberich, G. E.; Englert, U.; Marken, F.; Hofmann, P.
Organometallics 1993, 12, 4039.
(12) (a) Bublitz, D. Can. J . Chem. 1964, 42, 2381. (b) Bublitz, D. E.
J . Organomet. Chem. 1969, 16, 149. (c) Hayashi, T.; Okada, Y.;
Shimizu, S. Transition Met. Chem. 1996, 21, 418. (d) Astruc, D.;
Dabard, R. J . Organomet. Chem. 1975, 96, 283. (e) Astruc, D.; Dabard,
R. J . Organomet. Chem. 1976, 111, 339.
(13) Kudinov, A. R.; Fil’chikov, A. A.; Petrovskii, P. V.; Rybinskaya,
M. I. Russ. Chem. Bull. (Engl. Transl.) 1999, 48, 1352.
(14) Spradau, T. W.; Katzenellenbogen, J . A. Organometallics 1998,
17, 2009.
(15) Allcock, H. R.; McDonnell, G. S.; Riding, G. H.; Manners, I.
Chem. Mater. 1990, 2, 425.
(16) Gauthier, G. J . Chem. Soc., Chem. Commun. 1969, 690.