10.1002/chem.201800372
Chemistry - A European Journal
FULL PAPER
We would like to thank GSK and University College London,
Department of Chemistry for providing a PhD studentship (to
MTS), Pfizer and the Engineering and Physical Sciences
Research Council (EPSRC) for providing a CASE award to
support a PhD studentship (to VK), and University College
Conclusions
In summary, we have identified effective methods for the direct
amidation of unprotected amino acids with amines using
catalytic or stoichiometric quantities of boron or titanium Lewis
acids. In this study, a detailed exploration of the scope of these
reactions has been carried out, enabling the advantages and
limitations of each approach to be identified. In scheme 12 we
provide a flowchart to enable the best method for a particular
amidation reaction to be identified. We hope that this guide will
prove useful in promoting the direct amidation of amino acids as
a useful transformation for the chemistry community. With
burgeoning interest in the development of novel catalytic
methods for amide bond formation, [36] we anticipate that other
amidation catalysts may well be applicable to this reaction. We
also anticipate that implementation of this synthetic strategy in
the pharmaceutical sector can lead to improved cost-
effectiveness and reduced levels of waste in the synthesis of
complex medicinally relevant compounds.
London, Department of Chemistry for providing
a PhD
studentship (to RML). We would also like to thank the EPSRC
national mass spectrometry facility at Swansea University for
providing assistance with analysis of some samples.
Keywords: Amino acids • amides • catalysis • Boron • Green
Chemistry
[1]
D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey, J. L.
Leazer, R. J. Linderman, K. Lorenz, J. Manley, B. A. Pearlman, A.
Wells, A. Zaks T. Y. Zhang. Green Chem. 2007, 9, 411-420.
V. R. Pattabiraman, J. W. Bode. Nature 2011, 480, 471-479.
H. Leuchs. Chem. Ber. 1906, 39, 857-861.
[2]
[3]
[4]
[5]
P. D. Barlett, R. H. Jones J. Am. Chem. Soc. 1957, 79, 2153–2159.
W. D. Fuller, M. P. Cohen, M. Shabankareh, R. K. Blair, M. Goodman,
F. R. Naider. J. Am. Chem. Soc. 1990, 112, 7414–7416.
K. Burger, M. Rudolph. Chem. Zeit. 1990, 114, 249-251.
J. Spengler, C. Bottcher, F. Albericio, K. Burger. Chem. Rev. 2006, 106,
4728–4746.
[6]
[7]
[8]
[9]
S. H. van Leeuwen, P. J. L. M. Quaedflieg, Q. B. Broxterman, R. M. J.
Liskamp. Tetrahedron Lett. 2002, 43, 9203-9207.
S. H. van Leeuwen, P. J. L. M. Quaedflieg, Q. B. Broxterman, Y.
Milhajlovic, R. M. J. Liskamp. Tetrahedron Lett. 2005, 46, 653-656.
[10] M. A. Schmidt, E. A. Reiff, X. Qian, C. Hang, V. C. Truc, K. J. Natalie, C.
Wang, J. Albrecht, A. G. Lee, E. T. Lo, Z. Guo, A. Goswami, S.
Goldberg, J. Pesti, L. T. Rossano, Org. Proc. Res. Dev. 2015, 19,
1317–1322.
[11] M. D. Eastgate, M. A. Schmidt, K. R. Fandrick. Nature Rev. Chem.
2017, doi:10.1038/s41570-017-0016.
[12] R. K. Sharma, R. Jain. Synlett 2007, 603.
[13] a) R. M. Lanigan, P. Starkov, T. D. Sheppard, J. Org. Chem. 2013, 78,
4512; b) R. M. Lanigan, V. Karaluka, M. T. Sabatini, P. Starkov, M.
Badland, L. T. Boulton, T. D. Sheppard. Chem. Commun. 2016, 52.
8846-8849. c) V. Karaluka, R. M. Lanigan, P. M. Murray, M. Badland, L.
T. Boulton, T. D. Sheppard. Org. Biomol. Chem. 2015, 13, 10888-
10894 . d) P. Starkov, T. D. Sheppard, Org. Biomol. Chem. 2011, 9,
1320.
[14] M. T. Sabatini, L. T. Boulton, T. D. Sheppard. Sci. Adv. 2017;3:
e1701028.
[15] J. R. Dunetz, J. Magano, G. A. Weisenburger, Org. Process Res. Dev.
2016, 20, 140–177.
Scheme 12. Method selection flowchart for chemoselective amidation of
unprotected amino acids. For amides derived from His, Lys or Arg the method
using CDI reported by Sharma et al. should be considered.12
[16] a) H. Lundberg, F. Tinnis, H. Adolfsson. Chem. Eur. J. 2012, 18, 3822-
3826. b) H. Lundberg, H. Adolfsson. ACS Catal. 2015, 5, 3271–3277. c)
C. L. Allen, A. R. Chhatwal, J. M. J. Williams. Chem. Commun. 2012,48,
666-668.
[17] H. Lundberg, F. Tinnis, H. Adolfsson, Synlett 2012, 2201-2204.
[18] P. M. Murray, F. Bellany, L. Benhamou, D. –J. Bucar, A. B. Tabor, T. D.
Sheppard, Org. Biomol. Chem. 2016, 14, 2373-2384.
[19] a) K. Ishihara, S. Ohara, H. Yamamoto. J. Org. Chem. 1996, 61, 4196-
4197. b) K. Ishihara, Y. Lu. Chem. Sci., 2016, 7, 1276-1280 c) H. Noda,
M. Furutachi, Y. Asada, M. Shibasaki, N. Kumagai. Nature Chem. 2017,
9, 571–577
Experimental Section
Experimental procedures,1H and 13C NMR spectra, characterization data
for all compounds are available in the Supporting Information.
[20] a) R. M. Al-Zoubi, O. Marion, D. G. Hall. Angew. Chem. Int. Ed. 2008,
47, 2876-2879 b) S. Fatemi, N. Gernigon, D. G. Hall. Green Chem.
2015, 17, 4016-4028 c) N. Gernigon, R. M. Al-Zoubi, D. G. Hall. J. Org.
Chem. 2012, 77, 8386-8400
[21] a) K. Arnold, B. Davies, R. L. Giles, C. Grosjean, G. E. Smith, A.
Whiting. Adv. Synth. Catal. 2006, 348, 813-820 b) K. Arnold, B. Davies,
D. Hérault, A. Whiting. Angew. Chem. Int. Ed. 2008, 47, 2673-2676
Acknowledgements
12
This article is protected by copyright. All rights reserved.