2250
E. Bonnefille et al. / Journal of Organometallic Chemistry 694 (2009) 2246–2251
3
CH(CH3)2), 0.90 (d, JH/H = 6.7 Hz, 3H, CH(CH3)2), 1.25 (d,
3JH/H = 6.7 Hz, 3H, CH(CH3)2), 1.35 (s, 9H, C(CH3)3), 1.58 (s, 9H,
For all the structures data were collected at low temperature
(173 K) on a Bruker-AXS APEX II diffractometer equipped with
the Bruker Kryo-Flex cooler device and using a graphite-mono-
3
C(CH3)3), 3.14 (sept, JH/H = 6.7 Hz, 1H, CH(CH3)2), 3.82–3.93 (AB
system, JH/H = 15.2 Hz, 2H, CH2N), 3.87 (sept, JH/H = 6.7 Hz, 1H,
2
3
chromated Mo Ka radiation (k = 0.71073 Å). The structures were
4
4
CH(CH3)2), 7.15 (d, JH/H = 3,2 Hz, 1H, H3), 7.54 (d, JH/H = 3.2 Hz,
1H, H5); 13C NMR (C6D6), d (ppm): À0.28 (CH3Si), 18.68 (CH(CH3)2),
20.58 (CH(CH3)2), 21.63 (CH(CH3)2), 23.40 (CH(CH3)2), 26.82 (CN2),
31.37 (C(CH3)3), 32.11 (C(CH3)3), 34.50 (C(CH3)3), 37.37 (C(CH3)3),
51.80 (CH(CH3)2), 57.37 (CH(CH3)2), 60.17 (CH2), 118.24 (3-aryl-
C), 120.66 (5-aryl-C), 145.98 (2-aryl-C), 149.64 (4-aryl-C), 153.88
(1-aryl-C), 155.60 (6-aryl-C); 29Si NMR (C6D6), d (ppm): À0.25; IR
ꢀ
solved by direct methods [14] and all non-hydrogen atoms were
refined anisotropically using the least-squares method on F2 [15].
Selected data for the diazomethylgermylene 2: C25H45GeN3Si,
M = 488.32, monoclinic, space group Cc, a = 11.688(2) Å, b =
22.024(4) Å, c = 11.1173(19) Å,
a = c = 90°, b = 97.968(3)°, V =
2834.2(8) Å3, Z = 4, crystal size 0.30 Â 0.20 Â 0.20 mm3, 7123
reflections collected (3972 independent, Rint = 0.0227), 310 param-
(C6D6):
m
(CN2) = 2002.9 cmÀ1; EI–MS (70 eV), m/z (%): 489 (M+,
eters, R1 [I > 2 (I)] = 0.0340, wR2 [all data] = 0.0807, largest difference
r
20), 446 (M+ÀiPr, 5), 376 (ArGe, 100); UV (pentane) kmax
(e
):
in peak and hole: 0.308 and À0.267 e ÅÀ3
.
366 nm (126). Anal. Calc. for C25H45N3GeSi: C, 61.49, H, 9.29, N,
8.60; Found: C, 61.60, H, 9.38, N, 8.49%.
Selected data for the gem-germanediol 5: C25H49GeNO2Si,
M = 496.33, monoclinic, space group C2/c, a = 21.8065(17) Å, b =
12.4031(10) Å, c = 23.1368(18) Å,
a = c = 90°, b = 113.376(2)°, V =
4.5. Reaction of 3 with t-BuOH/H2O, synthesis of 4
5744.1(8) Å3, Z = 8, crystal size 0.40 Â 0.30 Â 0.20 mm3, 12,395
reflections collected (4067 independent, Rint = 0.0841), 290 param-
A solution of 2 (77 mg, 0.16 mmol) in 2 mL of tert-butyl alcohol
eters, R1 [I > 2 (I)] = 0.0453, wR2 [all data] = 0.0773, largest difference
r
and 2.8
lL of water was photolyzed at room temperature in a
in peak and hole: 0.329 and À0.287 e ÅÀ3
.
quartz Schlenk for 30 min. Then the tert-butyl alcohol was elimi-
nated under vacuum and the residue, a waxy material, dissolved
in C6D6 was identified to 4.
Appendix A. Supplementary data
(75 mg, 0.136 mmol, 85% yield); 1H NMR (C6D6), d (ppm): 0.30
CCDC 713960 and 713961 contain the supplementary crystallo-
graphic data for 2 and 5. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via www.ccdc.
this article (for 1) can be found, in the online version, at
2
(s, 9H, Me3Si), 0.74–0.87 (AB system, JH/H = 15.1 Hz, 2H,
3
3
CH2SiMe3), 1.05 (d, JH/H = 6.7 Hz, 6H, CH(CH3)2), 1.11 (d, JH/H
=
6.7 Hz, 6H, CH(CH3)2), 1.36 (s, 9H, C(CH3)3), 1.36 (s, 9H, OC(CH3)3),
1.65 (s, 9H, C(CH3)3), 3.00 (sept, 3JH/H = 6.7 Hz, 2H, CH(CH3)2), 3.90–
2
4.48 (AB system, JH/H = 15.1 Hz, 2H, CH2N), 7.63 (br, 1H, H3), 7.65
(br, 1H, H5), 7.98 (br s, 1H, OH); 13C NMR (C6D6), d (ppm): 1.01
(CH3Si), 13.13 (CH2SiMe3), 19.98 (CH(CH3)2), 21.73 (CH(CH3)2),
31.11 (C(CH3)3), 32.65 (OC(CH3)3), 33.33 (C(CH3)3), 34.66
(C(CH3)3), 37.13 (C(CH3)3), 47.37 (CH(CH3)2), 51.36 (CH2NiPr2),
73.38 (OC(CH3)3), 121.96 (3-aryl-C), 128.70 (5-aryl-C), 137.82 (1-
aryl-C), 147.00 (2-aryl-C), 150.86 (4-aryl-C), 155.14 (6-aryl-C);
29Si NMR (C6D6), d (ppm): 0.73; EI-MS (70 eV), m/z (%): 536
(MÀOH, 10), 480 (MÀOtBu, 30), 436 (MÀOHÀNiPr2, 100); CI-MS
(NH3), m/z (%): 554 (M+H+, 100).
References
[1] (a) G. Raabe, J. Michl, Chem. Rev. 85 (1985) 419–509;;
(b) A.G. Brook, Adv. Organomet. Chem. 39 (1996) 71–158;
(c) T. Müller, W. Ziche, N. Auner, in: Z. Rappoport, Y. Apeloig (Eds.), The
Chemistry of Organo Silicon Compounds, vol. 2, Wiley, New York, 1998, pp.
857–1062 (Part 2, Chapter 16);
(d) T.L. Morkin, W.J. Leigh, Acc. Chem. Res. 34 (2001) 129–136;
(e) T.L. Morkin, T.R. Owens, W.J. Leigh, in: Z. Rappoport, Y. Apeloig (Eds.), The
Chemistry of Organo Silicon Compounds, vol. 3, Wiley, New York, 2001, pp.
949–1026 (Chapter 17);
(f) L.E. Gusel’nikov, Coord. Chem. Rev. 244 (2003) 149–240;
(g) H. Ottoson, P.G. Steel, Chem. Eur. J. 12 (2006) 1576–1585.
[2] (a) K.M. Baines, W.G. Stibbs, Adv. Organomet. Chem. 39 (1996) 275–324;
(b) J. Escudié, H. Ranaivonjatovo, Adv. Organomet. Chem. 44 (1999) 113–
174;
4.6. Reaction of 3 with H2O, synthesis of 5
A solution of 2 (77 mg, 0.16 mmol) in 2 mL of tert-butyl alcohol
and 5.6 lL of water was photolyzed at room temperature in a
(c) J. Escudié, C. Couret, H. Ranaivonjatovo, J. Satgé, Coord. Chem. Rev. 130
(1994) 427–480;
(d) N. Tokitoh, R. Okazaki, in: Z. Rappoport (Ed.), The Chemistry of
Germanium, Tin and Lead Compounds, vol. 2, Wiley& Sons, New York, 2002,
pp. 843–901 (Chapter 13).
quartz Schlenk for 30 min. Then the tert-butyl alcohol was elimi-
nated under vacuum leading to a white solid identified to 5.
(71 mg, 0.142 mmol, 89% yield); m.p.: 127–128 °C; 1H NMR
(C6D6), d (ppm): 0.35 (s, 9H, Me3Si), 0.69 (s, 2H, CH2SiMe3), 1.01
[3] (a) A. Berndt, H. Meyer, C. Baum, W. Massa, S. Berger, Pure Appl. Chem. 59
(1887) 1011–1014;
3
(d, JH/H = 6.7 Hz, 12H, CH(CH3)2), 1.33 (s, 9H, C(CH3)3), 1.58 (s,
3
(b) H. Meyer, G. Baum, W. Massa, S. Berger, A. Berndt, Angew. Chem., Int. Ed.
Engl. 26 (1987) 546–548;
(c) M. Weidenbruch, H. Kilian, M. Stürmann, S. Pohl, W. Saak, H. Marsmann, D.
Steiner, A. Berndt, J. Organomet. Chem. 530 (1997) 255–257;
(d) M. Stürmann, W. Saak, M. Weidenbruch, A. Berndt, D. Scheschkewitz,
Heteroatom. Chem. 10 (1999) 554–558;
(e) G. Anselme, H. Ranaivonjatovo, J. Escudié, C. Couret, J. Satgé,
Organometallics 11 (1992) 2748–2750;
(f) G. Anselme, J.P. Declercq, A. Dubourg, H. Ranaivonjatovo, J. Escudié, C.
Couret, J. Organomet. Chem. 458 (1993) 49–56;
9H, C(CH3)3), 3.01 (sept, JH/H = 6.7 Hz, 2H, CH(CH3)2), 4.01 (s, 2H,
4
4
CH2NiPr2), 7.44 (d, JH/H = 3.1 Hz, 1H, H3), 7.64 (d, JH/H = 3.1 Hz,
1H, H5), 7.98 (br s, 2H, OH); 13C NMR (C6D6), d (ppm): 1.03 (CH3Si),
12.44 (CH2SiMe3), 20.24 (CH(CH3)2), 30.96 (C(CH3)3), 33.20
(C(CH3)3), 34.22 (C(CH3)3), 37.19 (C(CH3)3), 46.76 (CH(CH3)2),
51.49 (CH2NiPr2), 122.18 (5-aryl-C), 128.70 (3-aryl-C), 137.86 (1-
aryl-C), 143.44 (2-aryl-C), 150.38 (4-aryl-C), 156.36 (6-aryl-C);
29Si NMR (C6D6), d (ppm): 1.09; IR (C6D6):
3802.1; EI-MS (70 eV), m/z (%): 480 [(MÀOH), 100]. Anal. Calc.
for C25H49NO2GeSi: C, 60.50, H, 9.95, N, 2.82, Found: C, 60.58, H,
10.01, N, 2.75%.
m (OH) 3617.8 (wide),
(g) Y. Mizuhata, N. Takeda, T. Sasamori, N. Tokitoh, Chem. Commun. 47 (2005)
5876–5878;
(h) Y. Mizuhata, T. Sasamori, N. Takeda, N. Tokitoh, J. Am. Chem. Soc. 128
(2006) 1050–1051.
[4] C. Bibal, S. Mazières, H. Gornitzka, C. Couret, Angew. Chem., Int. Ed. 40 (2001)
952–953.
[5] (a) W. Setaka, K. Hirai, H. Tomokia, K. Sakamoto, M. Kira, J. Am. Chem. Soc. 126
(2004) 2696–2697;
5. Crystal structure determination
(b) W. Setaka, K. Hirai, H. Tomokia, M. Kira, Chem. Commun. 48 (2008) 6558–
6560.
[6] R. Chauvin, J. Phys. Chem. 96 (1992) 9194–9197.
[7] J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry, Harper Collins College
Publishers, 1993. p. A.30.
The structures of two compounds were determined. The
selected crystals were mounted on a glass fibber using perfluoro-
polyether oil and cooled rapidly to 173 K in a stream of cold N2.