Bromoipriflavone
105
atoms O1/C7 C15, symmetry code: (#) 0.75 − y,
0.25 + x, z + 0.25)]. The corresponding perpen-
dicular distances from Cg and Cg# to the best
least-squares ring planes of the other stacking ben-
tance is at the normal range compared with the
16
˚
reported criteria (3.40–3.70 A) of Br · · · Br in-
teraction, which shown that Br· · ·Br interaction
existsinthecrystalstructureofthetitlecompound.
˚
zopyranone moieties are 3.408 and 3.387 A, re-
spectively. The lateral displacement of Cg# rela-
tive to the normal from the Cg best least-square
ring plane at Cg to the Cg# best least-squares
Supplementary material
CCDC-244989 contains the sup-
plementary crystallographic data for this paper. These data
retrieving. html [or from the Cambridge Crystallographic Data
Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax:
+44(0)1223-336033; e-mail: deposit@ccdc.cam.ac.uk].
˚
ring plane is 0.40 A. The perpendicular distances
and the lateral displacement are agreed with the
angle of Cg Cg# Cg& being 175.0◦ [symme-
try code: (&) 0.5 − x, 1 − y, z + 0.5]. The other
short contacts forming the helices are extensive
hydrogen bonds C1# H1#· · ·O2& with distance
References
1. MacDonald, J.C.; Whitesides, G.M. Chem. Rev. 1994, 94, 2383.
2. Janiak, C. J. Chem. Soc. Dalton Trans. 2000, 3885.
3. Hunter, C.A.; Sanders, J.K.M. J. Am. Chem. Soc. 1990, 112,
5525.
˚
of H1#· · ·O2& being 2.60 A, C1#· · ·O2& being
◦
˚
3.470(2) A and bond angle being 155.7 .
Atom C2$ in the molecule acts as hydrogen-
bond donor to carbonyl oxygen atom O2& in the
molecule [symmetry code: ($) 0.25 + y, 0.75 −
x, 1.75 − z], with distances of H2$ · · · O2& be-
4. Orr, G.W.; Barbour, L.J.; Atwood, J.L. Science 1999, 285, 1049.
5. Luque, A.; Sertucha, J.; Castillo, O.; Roman, P. New J. Chem.
2001, 25, 1208.
6. Kaafarani, B.R.; Pinkerton, A.A.; Neckers, D.C. Tetrahedron
Lett. 2001, 42, 8137.
7. Etter, M.C. Acc. Chem. Res. 1990, 23, 120.
8. Bernstein, J.; Davis, R.E.; Shimoni, L.; Chang, N.L. Angew.
Chem. Int. Ed. Engl. 1995, 34, 1555.
9. Desiraju, G.R. Angew. Chem. Int. Ed. Engl. 1995, 34, 2311.
10. Reginster, J.Y.L. Bone Miner 1993, 23, 223.
11. Xie, J.E.; Chang, J.B.; Wang, X.M. Infra-Red Spectra Applied
in Organic Chemistry and Pharmachemistry; Science Press:
Beijing, 2000, p 411.
12. Ning, Y.C. Structural Identification of Organic Compounds and
Organic Spectroscopy; Science Press: Beijing, 2000, p 497.
13. Siemens SHELXTL, 1997. Version 5.10, Bruker AXS Inc.,
Madison, Wisconsin, USA.
14. Sheldrick, G.M. SHELX-97, Program Package for Crystal
Structure Solution and Refinement; University of Gottingen:
Germany, 1997.
15. Bocskei, Z.; Simon, K.; Varga, M.; Hermecz, I. Acta Crystal-
logr. 1996, C52, 1022.
16. Navon, O.; Bernstein, J.; Khodorkovsky, V. Angew. Chem. Int.
Ed. Engl. 1997, 36, 601.
˚
˚
ing 2.64 A, C2$ · · · O2& being 3.503(1) A and
bond angle of 154.3◦. A tri-centric hydrogen bond
is formed by hydrogen bonds C2$ H2$ · · ·O2&
and C1# H1# · · · O2&. Combination of these tri-
centered hydrogen bonds at the inversion position
generates the second motif R42(10) (Fig. 2).
The last substructure is C12 Br · · · Br∗ syn-
thon (Fig. 2). Two bromine atoms link the ad-
jacent C(4) heli∗ces at the same layer together
˚
with a Br · · · Br distance of 3.651 A and an-
gles of 168.10◦ [angles of C12 Br· · ·Br∗ and
C12∗ Br* · · · Br are all of 168.10◦; symmetry
code: (*) 1 − x, 1 − y, 1 − z]. The Br · · · Br dis-