Organic Letters
Letter
previously reported procedures except that the transformation
of dibromoolefin 13 to acetylenic intermediate 14 was effected
in a single operation by directly trapping an acetylide
intermediate with TESCl.21,22 Removal of the acetonide
group of 14 under acidic conditions followed by bis-acetylation
of the resulting hydroxyl hemiacetal 15 furnished 16. The N-
glycosylation of 16 with 2-fluoroadenine (17) was best
performed by treating 16 with TMSOTf and DBU in MeCN
to give 18,23 the deacetylation of which then afforded 19 as a
single diastereomer. Each step of the reaction sequence from 10
to 19 proceeded in a good-to-excellent yield, providing 14 in
88% overall yield from 10 and 19 in 75% overall yield from 14.
The final stage of our synthesis of EFdA (1) is shown in
Scheme 4. The adenosine derivative 19 was subjected to a one-
diastereomers (6 → 5, 5 → 10, and 16 → 18) proceeded
with virtually perfect stereoselection. From these favorable
features, as well as the use of 7 as an inexpensive starting
material, the new synthesis described herein is considered to be
more efficient and practical than previous syntheses.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, characterization data, and copies of
NMR spectra for new compounds. This material is available
AUTHOR INFORMATION
Corresponding Authors
■
Scheme 4. Completion of the Synthesis of EFdA (1)
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We are grateful to Prof. Iwabuchi and Dr. Sasano (Tohoku
University) for kindly providing Nor-AZADO.
■
REFERENCES
■
(1) (a) Kohgo, S.; Ohrui, H.; Kodama, E.; Matsuoka, M.; Mitsuya, H.
Can. Patent CA 2502109, 2005. (b) Kohgo, S.; Yamada, K.; Kitano, K.;
Iwai, Y.; Sakata, S.; Ashida, N.; Hayakawa, H.; Nameki, D.; Kodama,
E.; Matsuoka, M.; Mitsuya, H.; Ohrui, H. Nucleosides Nucleotides
Nucleic Acids 2004, 23, 671−690. (c) Ohrui, H. Chem. Rec. 2006, 6,
133−143. (d) Ohrui, H. Proc. Jpn. Acad., Ser. B 2011, 87, 53−65.
(e) Ohrui, H. J. Antivir. Antiretrovir. 2014, 6, 32−39.
(2) (a) Sarafianos, S. G.; Marchand, B.; Das, K.; Himmel, D. M.;
Parniak, M. A.; Hughes, S. H.; Arnold, E. J. Mol. Biol. 2009, 385, 693−
713. (b) Nikolenko, G. N.; Kotelkin, A. T.; Oreshkova, S. F.; Ilyichev,
A. A. Mol. Biol. 2011, 45, 93−109.
(3) (a) Nakata, H.; Amano, M.; Koh, Y.; Kodama, E.; Yang, G.;
Bailey, C. M.; Kohgo, S.; Hayakawa, H.; Matsuoka, M.; Anderson, K.
S.; Cheng, Y.-C.; Mitsuya, H. Antimicrob. Agents Chemother. 2007, 51,
2701−2708. (b) Kawamoto, A.; Kodama, E.; Sarafianos, S. G.;
Sakagami, Y.; Kohgo, S.; Kitano, K.; Ashida, N.; Iwai, Y.; Hayakawa,
H.; Nakata, H.; Mitsuya, H.; Arnold, E.; Matsuoka, M. Int. J. Biochem.
Cell Biol. 2008, 40, 2410−2420. (c) Michailidis, E.; Marchand, B.;
Kodama, E. N.; Singh, K.; Matsuoka, M.; Kirby, K. A.; Ryan, E. M.;
Sawani, A. M.; Nagy, E.; Ashida, N.; Mitsuya, H.; Parniak, M. A.;
Sarafianos, S. G. J. Biol. Chem. 2009, 284, 35681−35691.
pot process comprising its derivatization into 21 with 1,1′-
(thiocarbonyl)diimidazole 20 and subsequent reduction of 21
under Barton−McCombie conditions,24 providing 22 in an
excellent yield of 98%. Although 2′-deoxygenation of
ribonucleosides has previously been carried out in two separate
steps,25 we found that the two-step sequence could be effected
in one pot by using toluene as the same solvent for both
reactions.26 Finally, the 2′-deoxyadenosine derivative 22 was
exposed to TBAF in THF and then to Na in liquid ammonia to
remove the TES and benzyl protecting groups, respectively,
furnishing EFdA (1) in 61% yield for the two steps. The 1H and
13C NMR spectra of 1 were identical with those of an authentic
(4) Hattori, S.; Ide, K.; Nakata, H.; Harada, H.; Suzu, S.; Ashida, N.;
Kohgo, S.; Hayakawa, H.; Mitsuya, H.; Okada, S. Antimicrob. Agents
Chemother. 2009, 53, 3887−3893.
(5) For recent publications, see: (a) Muftuoglu, Y.; Sohl, C. D.;
Mislak, A. C.; Mitsuya, H.; Sarafianos, S. G.; Anderson, K. S. Antiviral
Res. 2014, 106, 1−4. (b) Zhang, W.; Parniak, M. A.; Sarafianos, S. G.;
Empey, P. E.; Rohan, L. C. Eur. J. Pharmacol. 2014, 732, 86−95.
(c) Maeda, K.; Desai, D. V.; Aoki, M.; Nakata, H.; Kodama, E. N.;
Mitsuya, H. Antivir. Ther. 2014, 19, 179−189. (d) Matsuzawa, T.;
Kawamura, T.; Ogawa, Y.; Maeda, K.; Nakata, H.; Moriishi, K.;
Koyanagi, Y.; Gatanaga, H.; Shimada, S.; Mitsuya, H. J. Invest.
Dermatol. 2014, 134, 1158−1161. (e) Michailidis, E.; Huber, A. D.;
Ryan, E. M.; Ong, Y. T.; Leslie, M. D.; Matzek, K. B.; Singh, K.;
Marchand, B.; Hagedorn, A. N.; Kirby, K. A.; Rohan, L. C.; Kodama,
E. N.; Mitsuya, H.; Parniak, M. A.; Sarafianos, S. G. J. Biol. Chem. 2014,
289, 24533−24548.
material, and the specific rotation of 1 [[α]27 +12.9 (c 1.00,
D
MeOH)] showed good agreement with a reported value
[[α]25 +12.4 (c 0.97, MeOH)].7
D
In conclusion, an enantioselective total synthesis of EFdA (1)
has been accomplished in an excellent overall yield of 37% from
diacetone-D-glucose 7 by a 14-step sequence that features the
diastereoselective installation of the tetrasubstitured stereo-
center at the C4′ position (6 → 5), chemoselective acetonide
hydrolysis of 11, and concomitant oxidative cleavage of the
resulting diol to form aldehyde 12. A one-pot 2′-deoxygenation
of 19 provided 22. Of value is the fact that the present synthesis
requires only four chromatographic purifications, mainly
because every reaction that could potentially produce
(7) (a) Kageyama, M.; Nagasawa, T.; Yoshida, M.; Ohrui, H.;
Kuwahara, S. Org. Lett. 2011, 13, 5264−5266. (b) Kageyama, M.;
C
Org. Lett. XXXX, XXX, XXX−XXX