Journal of the American Chemical Society
Article
J. J. R.; Damian, K.; Van Rensburg, H.; Slawin, A. M. Z.; Tooze, R. P.;
Clarke, M. L. Chem.Eur. J. 2009, 15, 10504−10513. (c) Clegg, W.;
Eastham, G. R.; Elsegood, M. R. J.; Heaton, B. T.; Iggo, J. A.; Tooze, R.
P.; Whyman, R.; Zacchini, S. J. Chem. Soc., Dalton Trans. 2002, 17,
3300−3308. (d) van Leeuwen, P. W. N. M.; Zuideveld, M. A.;
Swennenhuis, B. H. G.; Freixa, Z.; Kamer, P. C. J.; Goubitz, K.;
Fraanje, J.; Lutz, M.; Spek, A. L. J. Am. Chem. Soc. 2003, 125, 5523−
5539.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
P.R. gratefully acknowledges support from the Carl-Zeiss-
Foundation by a graduate fellowship. We thank Dako AG for
donation of high-oleic sunflower oils.
(14) Roesle, P.; Durr, C. J.; Moller, H. M.; Cavallo, L.; Caporaso, L.;
̈
̈
Mecking, S. J. Am. Chem. Soc. 2012, 134, 17696−17703.
REFERENCES
■
(15) Christl, J. T.; Roesle, P.; Stempfle, F.; Wucher, P.; Gottker-
̈
(1) (a) Biermann, U.; Bornscheuer, U.; Meier, M. A. R.; Metzger, J.
Schnetmann, I.; Muller, G.; Mecking, S. Chem.Eur. J. 2013, 19,
̈
O.; Schafer, H. J. Angew. Chem., Int. Ed. 2011, 50, 3854−3871.
̈
17131−17140.
(b) Chikkali, S.; Mecking, S. Angew. Chem., Int. Ed. 2012, 51, 5802−
(16) TOFs were calculated from the data shown in Figure 1, from the
data points at 2 min for ethylene, at 5 h for methyl oleate and at 6 h for
methyl linoleate, respectively.
5808.
(2) (a) Quinzler, D.; Mecking, S. Angew. Chem., Int. Ed. 2010, 49,
4306−4308. (b) Stempfle, F.; Quinzler, D.; Heckler, I.; Mecking, S.
Macromolecules 2011, 44, 4159−4166. (c) Vilela, C.; Silvestre, A. J. D.;
Meier, M. A. R. Macromol. Chem. Phys. 2012, 213, 2220−2227.
(17) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin,
K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega,
N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
(d) Mutlu, H.; Hofsaß, R.; Montenegro, R. E.; Meier, M. A. R. RSC
̈
Adv. 2013, 3, 4927−4934. (e) Stempfle, F.; Ritter, B. S.; Mulhaupt, R.;
̈
Mecking, S. Green Chem. 2014, 16, 2008−2014.
(3) Chikkali, S.; Stempfle, F.; Mecking, S. Macromol. Rapid Commun.
2012, 33, 1126−1129.
(4) (a) Picataggio, S.; Rohrer, T.; Deanda, K.; Lanning, D.; Reynolds,
R.; Mielenz, J.; Eirich, L. D. Nat. Biotechnol. 1992, 10, 894−898.
(b) Schoerken, U.; Kempers, P. Eur. J. Lipid Sci. Technol. 2009, 111,
627−645. (c) Lu, W.; Ness, J. E.; Xie, W.; Zhang, X.; Minshull, J.;
Gross, R. A. J. Am. Chem. Soc. 2010, 132, 15451−15455.
(5) (a) Stempfle, F.; Roesle, P.; Mecking, S. ACS Symposium Series
1105 Biobased Monomers, Polymers and Materials; Gross, R. A., Smith
P. B., Eds.; American Chemical Society: Washington, D.C., 2012; pp
151−163. (b) Dinger, M. B.; Mol, J. C. Adv. Synth. Catal. 2002, 344,
671−677. (c) Behr, A.; Obst, D.; Westfechtel, A. Eur. J. Lipid Sci.
Technol. 2005, 107, 213−219. (d) Ghebreyessus, K. Y.; Angelici, R. J.
Organometallics 2006, 25, 3040−3044. (e) Deuss, P. J.; Barta, K.; de
Vries, J. G. Catal. Sci. Technol. 2014, 4, 1174−1196.
̈
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09;
Gaussian, Inc.: Wallingford, CT, 2009.
(18) Becke, A. D. J. Chem. Phys. 1993, 98, 5648−5652.
(19) (a) Dunning, T. H., Jr.; Hay, P. J. In Modern Theoretical
Chemistry; Schaefer, H. F., III, Ed.; Plenum: New York, 1976; pp 1−
28. (b) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270−283.
(20) (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971,
54, 724−728. (b) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem.
Phys. 1972, 56, 2257−2261. (c) Hariharan, P. C.; Pople, J. A. Mol.
Phys. 1974, 27, 209−214. (d) Gordon, M. S. Chem. Phys. Lett. 1980,
76, 163−168. (e) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta
1973, 28, 213−222.
(6) (a) Yuki, Y.; Takahashi, K.; Tanaka, Y.; Nozaki, K. J. Am. Chem.
Soc. 2013, 135, 17393−17400. (b) van der Veen, L. A.; Kamer, P. C. J.;
van Leeuwen, P. W. N. M. Angew. Chem., Int. Ed. 1999, 38, 336−338.
(c) Selent, D.; Hess, D.; Wiese, K.-D.; Rottger, D.; Kunze, C.; Borner,
̈
̈
A. Angew. Chem., Int. Ed. 2001, 40, 1696−1698. (d) Bronger, R. P. J.;
Bermon, J. P.; Herwig, J.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.
Adv. Synth. Catal. 2004, 346, 789−799. (e) Klein, H.; Jackstell, R.;
Wiese, K.-D.; Borgmann, C.; Beller, M. Angew. Chem., Int. Ed. 2001,
40, 3408−3411.
(7) (a) Pugh, R. I.; Drent, E.; Pringle, P. G. Chem. Commun. 2001,
́
1476−1477. (b) Jimenez-Rodriguez, C.; Foster, D. F.; Eastham, G. R.;
Cole-Hamilton, D. J. Chem. Commun. 2004, 1720−1721.
(21) Note that single point energy calculations with the triple-ζ plus
polarization TZVP basis set were performed on selected Pd-alkyl
species (5-β-4, 5-β-6 and 7-β-6; cf. the Supporting Information) to
validate the chemical scenario derived with the 6-31G(d) basis set.
(22) In the isomerization study calculations on cis- and trans-isomers
of the respective olefins were performed for each coordination and
transition state. The results reported herein refer to the energetically
favored trans-isomer path for both diphosphines.
(23) The coordination energy of methyl 4-heptenoate to the Pd-H
fragment to form the olefin coordinated [(diphosphine)PdH(olefin)]+
complex is ΔG = 7.6 kcal mol−1 for the dtbpx coordinated species and
ΔG = −5.5 kcal mol−1 for the dmpx coordinated species.
(24) In the X-β-Y notation, the first number (X) denotes the carbon
atom attached to the Pd-center, the second number (Y) denotes the
carbon atom whose hydrogen atom interacts with the fourth
coordination site of the Pd-center via a β-hydrogen interaction.
(25) Energies of the four- and five-membered chelate have been
reported for both the dtbpx and dmpx coordinated diphosphine
previously by us. The energy of the linear Pd-Alkyl 7-β-6 of the dtbpx
coordinated species has been reported. CO insertion and methanolysis
has been reported for the four-membered (4-m.c.) and the linear 7-β-
6 dtbpx coordinated species (cf. ref 14).
(8) (a) Clegg, W.; Elsegood, M. R. J.; Eastham, G. R.; Tooze, R. P.;
Wang, X. L.; Whiston, K. Chem. Commun. 1999, 1877−1878.
(b) Clegg, W.; Eastham, G. R.; Elsegood, M. R. J.; Heaton, B. T.;
Iggo, J. A.; Tooze, R. P.; Whyman, R.; Zacchini, S. Organometallics
2002, 21, 1832−1840. (c) Carr, N.; Dunne, B. J.; Orpen, A. G.;
Spencer, J. L. J. Chem. Soc., Chem. Commun. 1988, 926−928.
́
(9) (a) Jimenez-Rodriguez, C.; Eastham, G. R.; Cole-Hamilton, D. J.
Inorg. Chem. Commun. 2005, 8, 878−881. (b) Furst, M. R. L.; Le Goff,
R.; Quinzler, D.; Mecking, S.; Botting, C. H.; Cole-Hamilton, D. J.
Green Chem. 2012, 14, 472−477.
(10) Vilches-Herrera, M.; Domke, L.; Borner, A. ACS Catal. 2014, 4,
1706−1724.
(11) (a) van Leeuwen, P. W. N. M. Homogeneous Catalysis:
Understanding the Art; Kluwer Academic Publishers: Dordrecht,
2004. (b) van Leeuwen, P. W. N. M.; Chadwick, J. C. Homogeneous
Catalysts: Activity−Stability−Deactivation; Wiley-VCH Verlag GmbH
& Co. KGaA: Weinheim, 2011.
(12) (a) McCoy, M.; Tremblay, J.-F. Chem. Eng. News 2009, 87 (33),
9. (b) Harris, B. Ingenia 2010, No. 45, 18−23.
(13) (a) Eastham, G. R.; Heaton, B. T.; Iggo, J. A.; Tooze, R. P.;
Whyman, R.; Zacchini, S. Chem. Commun. 2000, 609−610. (b) Frew,
̈
(26) The methanolysis reaction of the linear and the five-membered
chelate dtbpx coordinated Pd-acyl species has been reported
previously (cf. ref 14).
(27) ΔΔG‡ = 3.0 kcal mol−1 refers to the three methanol coordinated
TSs. For the single methanol coordinated TSs ΔΔG‡ = 0.7 kcal mol−1
J
dx.doi.org/10.1021/ja508447d | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX