Journal of the American Chemical Society
Article
̈
6257−6274. (f) Jakle, F. Advances in the Synthesis of Organoborane
(8) (a) Matsuo, K.; Saito, S.; Yamaguchi, S. Photodissociation of B-
N Lewis Adducts: A Partially Fused Trinaphthylborane with Dual
Fluorescence. J. Am. Chem. Soc. 2014, 136, 12580−12583.
(b) Kushida, T.; Shuto, A.; Yoshio, M.; Kato, T.; Yamaguchi, S. A
Planarized Triphenylborane Mesogen: Discotic Liquid Crystals with
Ambipolar Charge-Carrier Transport Properties. Angew. Chem., Int.
Ed. 2015, 54, 6922−6925. (c) Matsuo, K.; Saito, S.; Yamaguchi, S. A
Soluble Dynamic Complex Strategy for the Solution-Processed
Fabrication of Organic Thin-Film Transistors of a Boron-Containing
Polycyclic Aromatic Hydrocarbon. Angew. Chem., Int. Ed. 2016, 55,
11984−11988. (d) Osumi, S.; Saito, S.; Dou, C.; Matsuo, K.; Kume,
K.; Yoshikawa, H.; Awaga, K.; Yamaguchi, S. Boron-doped nano-
graphene: Lewis acidity, redox properties, and battery electrode
performance. Chem. Sci. 2016, 7, 219−227. (e) John, A.; Bolte, M.;
Lerner, H.-W.; Meng, G.; Wang, S.; Peng, T.; Wagner, M. Doubly
boron-doped pentacenes as emitters for OLEDs. J. Mater. Chem. C
2018, 6, 10881−10887.
Polymers for Optical, Electronic, and Sensory Applications. Chem.
Rev. 2010, 110, 3985−4022.
(4) (a) Yamaguchi, S.; Wakamiya, A. Boron as a key component for
new π-electron materials. Pure Appl. Chem. 2006, 78, 1413−1424.
(b) Mellerup, S. K.; Wang, S. Boron-Doped Molecules for
Optoelectronics. Trends Chem. 2019, 1, 77−89.
(5) (a) Chen, J.; Kampf, J. W.; Ashe, A. J. Syntheses and Structures
of 6,13-Dihydro-6,13-diborapentacenes: π-Stacking in Heterocyclic
Analogues of Pentacene. Organometallics 2008, 27, 3639−3641.
(b) Wood, T. K.; Piers, W. E.; Keay, B. A.; Parvez, M. 9-
Boraanthracene Derivatives Stabilized by N-Heterocyclic Carbenes.
Angew. Chem., Int. Ed. 2009, 48, 4009−4012. (c) Wood, T. K.; Piers,
W. E.; Keay, B. A.; Parvez, M. Synthesis and Comparative
Characterization of 9-Boraanthracene, 5-Boranaphthacene, and 6-
Borapentacene Stabilized by the H2IMes Carbene. Chem. - Eur. J.
2010, 16, 12199−12206. (d) Dou, C.; Saito, S.; Matsuo, K.; Hisaki, I.;
Yamaguchi, S. A Boron-Containing PAH as a Substructure of Boron-
Doped Graphene. Angew. Chem., Int. Ed. 2012, 51, 12206−12210.
(e) Schickedanz, K.; Trageser, T.; Bolte, M.; Lerner, H.-W.; Wagner,
M. A boron-doped helicene as a highly soluble, benchtop-stable green
emitter. Chem. Commun. 2015, 51, 15808−15810. (f) Hertz, V. M.;
Ando, N.; Hirai, M.; Bolte, M.; Lerner, H.-W.; Yamaguchi, S.;
Wagner, M. Steric Shielding vs Structural Constraint in a Boron-
Containing Polycyclic Aromatic Hydrocarbon. Organometallics 2017,
(9) (a) Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder,
S. R.; Zhan, X. Non-fullerene acceptors for organic solar cells. Nat.
Rev. Mater. 2018, 3, 18003. (b) Hummelen, J. C.; Knight, B. W.;
LePeq, F.; Wudl, F.; Yao, J.; Wilkins, C. L. Preparation and
Characterization of Fulleroid and Methanofullerene Derivatives. J.
Org. Chem. 1995, 60, 532−538. (c) Wurthner, F.; Stolte, M.
̈
Naphthalene and perylene diimides for organic transistors. Chem.
́
Commun. 2011, 47, 5109−5115. (d) Nowak-Krol, A.; Shoyama, K.;
36, 2512−2519. (g) Kaese, T.; Hubner, A.; Bolte, M.; Lerner, H.-W.;
̈
Stolte, M.; Wurthner, F. Naphthalene and perylene diimides - better
̈
Wagner, M. Forming B-B Bonds by the Controlled Reduction of a
Tetraaryl-diborane(6). J. Am. Chem. Soc. 2016, 138, 6224−6233.
(h) Miyamoto, F.; Nakatsuka, S.; Yamada, K.; Nakayama, K.-I.;
Hatakeyama, T. Synthesis of Boron-Doped Polycyclic Aromatic
Hydrocarbons by Tandem Intramolecular Electrophilic Arene
Borylation. Org. Lett. 2015, 17, 6158−6161. (i) Zhou, Z.;
Wakamiya, A.; Kushida, T.; Yamaguchi, S. Planarized Triarylboranes:
Stabilization by Structural Constraint and Their Plane-to-Bowl
Conversion. J. Am. Chem. Soc. 2012, 134, 4529−4532. (j) Hertz, V.
M.; Bolte, M.; Lerner, H.-W.; Wagner, M. Boron-Containing
Polycyclic Aromatic Hydrocarbons: Facile Synthesis of Stable,
Redox-Active Luminophores. Angew. Chem., Int. Ed. 2015, 54,
8800−8804. (k) John, A.; Bolte, M.; Lerner, H.-W.; Wagner, M. A
Vicinal Electrophilic Diborylation Reaction Furnishes Doubly Boron-
Doped Polycyclic Aromatic Hydrocarbons. Angew. Chem., Int. Ed.
2017, 56, 5588−5592. (l) Crossley, D. L.; Kahan, R. J.; Endres, S.;
Warner, A. J.; Smith, R. A.; Cid, J.; Dunsford, J. J.; Jones, J. E.;
Vitorica-Yrezabal, I.; Ingleson, M. J. A modular route to boron doped
PAHs by combining borylative cyclisation and electrophilic C-H
borylation. Chem. Sci. 2017, 8, 7969−7977. (m) Kahan, R. J.;
Crossley, D. L.; Cid, J.; Radcliffe, J. E.; Woodward, A. W.; Fasano, V.;
Endres, S.; Whitehead, G. F. S.; Ingleson, M. J. Generation of a series
of Bn fused oligo-naphthalenes (n = 1 to 3) from a B1-polycyclic
aromatic hydrocarbon. Chem. Commun. 2018, 54, 9490−9493.
(n) Kushida, T.; Shirai, S.; Ando, N.; Okamoto, T.; Ishii, H.;
Matsui, H.; Yamagishi, M.; Uemura, T.; Tsurumi, J.; Watanabe, S.;
Takeya, J.; Yamaguchi, S. Boron-Stabilized Planar Neutral π-Radicals
with Well-Balanced Ambipolar Charge-Transport Properties. J. Am.
Chem. Soc. 2017, 139, 14336−14339. (o) Shuto, A.; Kushida, T.;
Fukushima, T.; Kaji, H.; Yamaguchi, S. π-Extended Planarized
Triphenylboranes with Thiophene Spacers. Org. Lett. 2013, 15,
6234−6237.
alternatives to fullerenes for organic electronics? Chem. Commun.
2018, 54, 13763−13772.
(10) Farrell, J. M.; Schmidt, D.; Grande, V.; Wurthner, F. Synthesis
of a Doubly Boron-Doped Perylene through NHC-Borenium
Hydroboration/C-H Borylation/Dehydrogenation. Angew. Chem.,
Int. Ed. 2017, 56, 11846−11850.
̈
̈ ̈
(11) (a) Kolle, P.; Noth, H. The chemistry of borinium and
borenium ions. Chem. Rev. 1985, 85, 399−418. (b) Piers, W. E.;
Bourke, S. C.; Conroy, K. D. Borinium, Borenium, and Boronium
Ions: Synthesis, Reactivity, and Applications. Angew. Chem., Int. Ed.
2005, 44, 5016−5036. (c) De Vries, T. S.; Prokofjevs, A.; Vedejs, E.
Cationic Tricoordinate Boron Intermediates: Borenium Chemistry
from the Organic Perspective. Chem. Rev. 2012, 112, 4246−4282.
̂
(12) (a) Prokofjevs, A.; Boussonniere, A.; Li, L.; Bonin, H.; Lacote,
E.; Curran, D. P.; Vedejs, E. Borenium ion catalyzed hydroboration of
alkenes with N-heterocyclic carbene-boranes. J. Am. Chem. Soc. 2012,
134, 12281−12288. (b) De Vries, T. S.; Prokofjevs, A.; Harvey, J. N.;
Vedejs, E. Superelectrophilic Intermediates in Nitrogen-Directed
Aromatic Borylation. J. Am. Chem. Soc. 2009, 131, 14679−14687.
(c) Farrell, J. M.; Stephan, D. W. Planar N-Heterocyclic Carbene
Diarylborenium Ions: Synthesis by Cationic Borylation and Reactivity
with Lewis Bases. Angew. Chem., Int. Ed. 2015, 54, 5214−5217.
̈
(d) Ozgun, T.; Chen, G.-Q.; Daniliuc, C. G.; McQuilken, A. C.;
̈
Warren, T. H.; Knitsch, R.; Eckert, H.; Kehr, G.; Erker, G.
Unsaturated Vicinal Frustrated Lewis Pair Formation by Electrocyclic
Ring Closure and Their Reaction with Nitric Oxide. Organometallics
2016, 35, 3667−3680.
(13) Curran, D. P.; Solovyev, A.; Brahmi, M. M.; Fensterbank, L.;
̂
Malacria, M.; Lacote, E. Synthesis and Reactions of N-Heterocyclic
Carbene Boranes. Angew. Chem., Int. Ed. 2011, 50, 10294−10317.
(14) An alternative synthesis for 1-boraphenalenes has been recently
described: Kahan, R. J.; Crossley, D. L.; Cid, J.; Radcliffe, J. E.;
Ingleson, M. J. Synthesis, Characterization, and Functionalization of
1-Boraphenalenes. Angew. Chem., Int. Ed. 2018, 57, 8084−8088.
(6) Hertz, V. M.; Lerner, H.-W.; Wagner, M. Ru-Catalyzed
Benzannulation Leads to Luminescent Boron-Containing Polycyclic
Aromatic Hydrocarbons. Org. Lett. 2015, 17, 5240−5243.
̌
(15) (a) Pavlicek, N.; Mistry, A.; Majzik, Z.; Moll, N.; Meyer, G.;
(7) (a) Kawai, S.; Saito, S.; Osumi, S.; Yamaguchi, S.; Foster, A. S.;
Spijker, P.; Meyer, E. Atomically controlled substitutional boron-
doping of graphene nanoribbons. Nat. Commun. 2015, 6, 8098.
(b) Cloke, R. R.; Marangoni, T.; Nguyen, G. D.; Joshi, T.; Rizzo, D.
J.; Bronner, C.; Cao, T.; Louie, S. G.; Crommie, M. F.; Fischer, F. R.
Site-Specific Substitutional Boron Doping of Semiconducting Arm-
chair Graphene Nanoribbons. J. Am. Chem. Soc. 2015, 137, 8872−
8875.
Fox, D. J.; Gross, L. Synthesis and characterization of triangulene. Nat.
Nanotechnol. 2017, 12, 308−311. (b) Clar, E.; Stewart, D. G.
Aromatic Hydrocarbons. LXV. Triangulene Derivatives. J. Am. Chem.
Soc. 1953, 75, 2667−2672.
(16) Calculated according to the equation: ELUMO = −e(E1/2 red) −
5.15 eV. Adapted from: Cardona, C. M.; Li, W.; Kaifer, A. E.;
Stockdale, D.; Bazan, G. C. Electrochemical Considerations for
Determining Absolute Frontier Orbital Energy Levels of Conjugated
H
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX