Tetrahedron
7.35 (d, J = 7.3 Hz, 2H) ppm; 13C NMR (75 MHz, DMSO-
d6): δ 149.3, 141.4, 135.5, 133.9, 128.4, 126.8, 124.1, 109.0
ppm. HRMS (ESI) calcd. for C20H17N2 [M+H]: 285.1392,
found: 285.1387.
9
Kanyiva, T. Hiyama, J. Am. Chem. Soc. 2008, 130, 2448; (j) M.
Tobisu, I. Hyodo, N. Chatani, J. Am. Chem. Soc. 2009, 131, 12070;
(k) J. Wu, X. Cui, L. Chen, G. Jiang, Y. Wu, J. Am. Chem. Soc.
2009, 131, 13888; (l) M. Kim, J. Kwak, S. Chang, Angew. Chem.,
Int. Ed. 2009, 48, 8935; (m) J. J. Mousseau, J. A. Bull, A. B.
Charette, Angew. Chem., Int. Ed. 2010, 49, 1115; (n) Fukumoto, M.
Hirano, N. Matsubara, N. Chatani, J. Org. Chem. 2017, 82, 13649;
(o) T.-Y. Feng, H.-X. Li, D. J. Young, J.-P. Lang, J. Org. Chem.
2017, 82, 4113; (p) F, Xiao, C. Liu, S. Yuan, H. Huang, G.-J.
Deng, J. Org. Chem. 2018, 83, 10420; (q) S.-S. Li, L. Zhou, L.
Wang, H. Zhao, L. Yu, J. Xiao, Org. Lett. 2018, 20, 138.
4.2.40 (E)-2,5-di((E)-styryl)pyrazine (7b)
The title compound was prepared according to the general
procedure and purified by column chromatography to give
a yellow solid 116 mg, 41% yield.1H NMR (300 MHz,
DMSO-d6): δ 8.61 (s, 2H), 7.84 (d, J = 16.2 Hz, 2H), 7.69
(d, J = 7.8 Hz, 4H), 7.40 (t, J = 7.5 Hz, 5H), 7.35 – 7.25 (m,
3H) ppm; 13C NMR (75 MHz, DMSO-d6): δ 147.9, 142.3,
135.4, 133.0, 127.9, 126.3, 123.8 ppm. HRMS (ESI) calcd.
for C20H17N2 [M+H]: 285.1392, found: 285.1390.
3 For selected examples of Witting reaction, see: (a) G. Wittig, G.
Geissler, Justus Liebigs Ann. Chem. 1953, 580, 44; (b) B. E.
Maryanoff, A. B. Reitz, Chem. Rev. 1989, 89, 863; (c) Q.-Q. Li, Z.
Shah, J.-P. Qu, Y.-B. Kang, J. Org. Chem. 2018, 83. 296; (d) C.
Schultze, B. Schmidt, J. Org. Chem. 2018, 83, 5210. For selected
examples of Horner–Wadsworth–Emmons reaction, see: (e) L.
Horner, H. Hoffmann, H. G. Wippel, G. Klahre, Chem. Ber. 1959,
92, 2499; (f) W. S. Wadsworth, W. D. Emmons, J. Am. Chem. Soc.
1961, 83, 1733; (g) J. Clayden, S. Warren, Angew. Chem. Int. Ed.
1996, 35, 241. For selected examples of Peterson olefination, see:
(h) D. J. Peterson, J. Org. Chem. 1968, 33, 780-784; (i) L. F. v.
Staden, D. Gravestock, D. J. Ager, Chem. Soc. Rev. 2002, 31, 195;
(j) M. C. Fernández, A. Díaz, J. J. Guillín, O. Blanco, M. Ruiz, V.
Ojea, J. Org. Chem., 2006, 71, 6958; (k) R. E. Beveridge, R. A.
Batey, Org. Lett., 2013, 15, 3086. For selected examples of Julia
olefination, see: (l) M. Julia, J.-M. Paris, Tetrahedron Lett. 1973,
14, 4833; (m) S. Banerjee, S. Sinha, P. Pradhan, A. Caruso, D.
Notes
The authors declare no competing financial interest.
Acknowledgments
This research was supported by the Shandong Provincial
Natural Science Foundation of China (Nos. ZR2017MB029,
ZR2017BB060), the Qingdao Science and Technology
Foundation (18-2-2-49-jch), the Qingdao University of
Science and Technology Talent Startup Fund Foundation
(QUSTHX201921) for financial support.
Liebowitz, D. Parrish, M. Rossi, B. Zajc, J. Org. Chem., 2016, 81
3983; (n) A. K. Simlandy, S. Mukherjee, J. Org. Chem., 2017, 82
4851.
,
,
Supplementary Material
Supplementary data associated with this article can be found,
in the online version, at
4
For selected examples of Heck coupling reaction, see: (a) R. F.
Heck, J. P. Nolley, J. Org. Chem. 1972, 37, 2320; (b) M. J. D.
Pires, D. L. Poeira, S. I. Purificação, M. M. B. Marques, Org. Lett.
2016, 18, 3250; (c) J. A. Carmona, V. Hornillos, P. Ramírez-
López, A. Ros, J. Iglesias-Sigüenza, E. Gómez-Bengoa, R.
Fernández, J. M. Lassaletta, J. Am. Chem. Soc. 2018, 140, 11067.
For selected examples of Suzuki coupling reaction, see: (d) K.
Ferré-Filmon, L. Delaude, A. Demonceau, A. F. Noels, Coord.
Chem. Rev. 2004, 248, 2323; (g) J. P. G. Rygus and C. M.
Crudden, J. Am. Chem. Soc. 2017, 139, 18124; (h) P. Guo, H.
Zhang, J. Zhou, F. Gallou, M. Parmentier, H. Wang, J. Org. Chem.
References
1
(a) S. Matar, L. F. Hatch, in Chemistry of Petrochemical Processes,
Gulf Professional Publishing, Woburn, 2001; (b) Henry, G. D.
Tetrahedron 2004, 60, 6043; (c) Michael, J. P. Nat. Prod. Rep.
2005, 22, 627; (d) T. Laird, Org. Process Res. Dev. 2006, 10, 851;
(e) L.-C. Campeau, K. Fagnou, Chem. Soc. Rev. 2007, 36, 1058; (f)
M. C. Bagley, C. Glover, E. A. Merritt, Synlett 2007, 2459; (g) S.
Wang, Y.-T. Chang, Chem. Commun. 2008, 1173; (h) J. C. Jung, E.
Lim, Y. Lee, J. M. Kang, H. Kim, S. Jang, S. Oh, M. Jung, Eur. J.
Med. Chem. 2009, 44, 3166; (i) D. Simoni, M. Roberti, F. P.
Invidiata, E. Aiello, S. Aiello, P. Marchetti, R. Baruchello, M.
Eleopra, A. Di Cristina, S. Grimaudo, N. Gebbia, L. Crosta, F.
Dieli, M. Tolomeo, Bioorg. Med. Chem. Lett. 2006, 16, 3245; (j)
N.-Y. Kang, H.-H. Ha, S.-W. Yun, Y. H. Yu, Y.-T. Chang, Chem.
Soc. Rev. 2011, 40, 3613; (k) Q. Li, J.-S. Lee, C. Ha, C. B. Park, G.
2018, 83, 7523; (i) D. M. Knoll, S. Bräse, ACS Omega, 2018, 3,
12158; (j) S. H. Nazari, J. E. Bourdeau, M. R. Talley, G. A.
Valdivia-Berroeta, S. J. Smith, D. J. Michaelis, ACS Catalysis,
2018, 8, 86.
5
6
(a) T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18; (b)
R. H. Grubbs, Handbook of Metathesis, WileyVCH, Weinheim,
2003
.
Yang, W. B. Gan, Y.-T. Chang, Angew. Chem. Int. Ed. 2004, 43
,
(a) C. Gunanathan, D. Milstein, Science 2013, 341, 1229712. (b) R.
H. Crabtree, Chem. Rev. 2015, 115, 127. (c) D. Deng, B. Hu, M.
Yang and D. Chen, Organometallics. 2018, 37, 2386; (d) P. J.
Llabres-Campaner, R. Ballesteros-Garrido, R. Ballesteros and B.
Abarca, J. Org. Chem. 2018, 83, 521.
(a) C. O. Tuck, E. Perez, I. T. Horvath, R. A. Sheldon, M. Poliakoff,
Science 2012, 337, 695; (b) T. P. Vispute, H. Zhang, A. Sanna, R.
Xiao, G. W. Huber, Science 2010, 330, 1222; (c) S. Michlik, R.
6331; (l) R. Fanelli, É. Besserer-Offroy, A. René, J. Côté, P.
Tétreault, J. Collerette-Tremblay, J.-M. Longpré, R. Leduc, J.
Martinez, P. Sarret, F. Cavelier, J. Med. Chem. 2015, 58, 7785; (m)
S. Jiang, G. Duan, U. Kuhn, M. Mörl, V. Altstädt, A. L. Yarin, A.
Greiner, Angew. Chem. Int. Ed. 2017, 56, 3285; (n) S. Jiang, S.
Agarwal, A. Greiner, Angew. Chem. Int. Ed. 2017, 56, 15520.
For selected examples, see: (a) M. Murakami, S. Hori, J. Am. Chem.
Soc. 2003, 125, 4720; (b) R. Dumeunier, I. E. Markó in Modern
Carbonyl Olefination: Methods and Applications (Ed.: T. Takeda),
Wiley-VCH, Weinheim, 2004; (c) L.-C. Campeau, S. Rousseaux,
K. Fagnou, J. Am. Chem. Soc. 2005, 127, 18020; (d) J.-P. Leclerc,
K. Fagnou, Angew. Chem., Int. Ed. 2006, 45, 7781; (e) K. S.
7
2
Kempe, Nature Chemistry 2013,
5, 140; (d) F. Kallmeier, R.
Kempe, Angew. Chem. Int. Ed. 2018, 57, 46.
G. Zhang, T. Irrgang, T. Dietel, F. Kallmeier, R. Kempe, Angew.
Chem. Int. Ed. 2018, 57, 9131.
M. K. Barman, S. Waiba, B. Maji, Angew. Chem. Int. Ed. 2018, 57
9126.
8
9
,
Kanyiva, Y. Nakao, T. Hiyama, Angew. Chem., Int. Ed. 2007, 46
8872; (f) L.-C. Campeau, M. Bertrand-Laperle, J.-P. Leclerc, E.
Villemure, S. Gorelsky, K. Fagnou, J. Am. Chem. Soc. 2008, 130
3266; (g) L.-C. Campeau, D. J. Shipper, K. Fagnou, J. Am. Chem.
Soc. 2008, 130, 3276; (h) A. Larivée, J. J. Mousseau, A. B.
Charette, J. Am. Chem. Soc. 2008, 130, 52; (i) Y. Nakao, K. S.
,
10 (a) B. Blank, R. Kempe, J. Am. Chem. Soc. 2010, 132, 924. (b) F.
Kallmeier, T. Irrgang, T. Dietel, R. Kempe, Angew. Chem. Int. Ed.
2016, 55, 11806; (c) F. Kallmeier, B. Dudziec, T. Irrgang, R. Kempe,
Angew. Chem. Int. Ed. 2017, 56, 7261; (d) N. Deibl, R. Kempe,
,