Journal of the American Chemical Society
Article
(12) King, A. E.; Huffman, L. M.; Casitas, A.; Costas, M.; Ribas, X.;
Stahl, S. S. J. Am. Chem. Soc. 2010, 132, 12068−12073.
(13) For fundamental studies of the C−O/C−N reductive
elimination reactions, see: (a) Huffman, L. M.; Stahl, S. S. J. Am.
Chem. Soc. 2008, 130, 9196−9197. (b) Huffman, L. M.; Casitas, A.;
Font, M.; Canta, M.; Costas, M.; Ribas, X.; Stahl, S. S. Chem.Eur. J.
2011, 17, 10643−10650.
(14) For leading references, see: (a) Zaitsev, V. G.; Shabashov, D.;
Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154−13155. (b) Daugulis,
O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074−1086.
(15) The first application of this ligand to Cu-mediated C−H
functionalization (non-aerobic) was reported recently: Tran, L. D.;
Popov, I.; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 18237−18240.
(16) For a similar beneficial catalytic effect arising from in situ
generation of a base upon aerobic oxidation of CuI in alcohol oxidation
reaction, see: Hoover, J. M.; Ryland, B. L.; Stahl, S. S. J. Am. Chem. Soc.
2013, 135, 2357−2367.
(17) For example, in Cu-catalyzed oxidative chlorination (ref 4),
benzene, toluene, and anisole do not react, while dimethoxybenzene,
which is significantly more electron-rich, does react. As another
example, the reaction of PhOAc is 1000-fold faster than PhO2CCF3 in
CoIII-mediated oxidative trifluoroacetoxylation (ref 7), which is
proposed to proceed via SET.
(18) For a comparison of the electronic effects of ″electrophilic″ C−
H activation by PdII and other more-classical electrophiles, see: Stock,
L. M.; Tse, K.-t.; Vorvick, L. J.; Walstrum, S. A. J. Org. Chem. 1981, 46,
1757−1759.
REFERENCES
■
(1) (a) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem., Int.
Ed. 2011, 50, 11062−11087. (b) Shi, Z.; Zhang, C.; Tang, C.; Jiao, N.
Chem. Soc. Rev. 2012, 41, 3381−3430. (c) Punniyamurthy, T.; Rout, L.
Coord. Chem. Rev. 2008, 252, 134−154. (d) Gamez, P.; Aubel, P. G.;
Driessen, W. L.; Reedijk, J. Chem. Soc. Rev. 2001, 30, 376−385.
(e) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780−
1824.
(2) (a) Brunel, J. M. Chem. Rev. 2005, 105, 857−898. (b) Sainsbury,
M. Tetrahedron 1980, 36, 3327−3359. (c) Ashenhurst, J. A. Chem. Soc.
̌
́
̌ ̌ ̌
Rev. 2010, 39, 540−548. (d) Kocovsky, P.; Vyskocil, S.; Smrcina, M.
Chem. Rev. 2003, 103, 3212−3245. (e) Rosini, C.; Franzini, L.;
Raffaelli, A.; Salvadori, P. Synthesis 1992, 1992, 503−517. (f) Wang, H.
Chirality 2010, 22, 827−837.
(3) (a) Menini, L.; Gusevskaya, E. V. Chem. Commun. 2006, 209−
211. (b) Menini, L.; Gusevskaya, E. V. Appl. Catal., A 2006, 309, 122−
128. (c) Menini, L.; Parreira, L. A.; Gusevskaya, E. V. Tetrahedron Lett.
2007, 48, 6401−6404. (d) Menini, L.; da Cruz Santos, J. C.;
Gusevskaya, E. V. Adv. Synth. Catal. 2008, 350, 2052−2058.
(4) Yang, L.; Lu, Z.; Stahl, S. S. Chem. Commun. 2009, 45, 6460−
6462.
(5) For leading references, see: (a) Boess, E.; Schmitz, C.;
Klussmann, M. J. Am. Chem. Soc. 2012, 134, 5317−5325. (b) Li, C.-
J. Acc. Chem. Res. 2009, 42, 335−344. (c) Li, C.-J.; Li, Z. Pure Appl.
Chem. 2006, 78, 935−945. (d) Li, Z.; Bohle, D. S.; Li, C.-J. P. Natl.
Acad. Sci. 2006, 103, 8928−8933.
(6) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc.
2006, 128, 6790−6791.
(19) See, for example: (a) Ryabov, A. D.; Sakodinskaya, I. K.;
Yatsimirsky, A. K. J. Chem. Soc., Dalton Trans. 1985, 14, 2629−2638.
(b) Karig, G.; Moon, M.-T.; Thasana, N.; Gallagher, T. Org. Lett.
2002, 4, 3115−3118. (c) Davies, D. L.; Donald, S. M. A.; Macgregor,
S. A. J. Am. Chem. Soc. 2005, 127, 13754−13755. (d) García-
Cuadrado, D.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. J. Am.
Chem. Soc. 2006, 128, 1066−1067. (e) Gorelsky, S. I.; Lapointe, D.;
Fagnou, K. J. Am. Chem. Soc. 2008, 130, 10848−10849. (f) Balcells, D.;
Clot, E.; Eisenstein, O. Chem. Rev. 2010, 110, 749−823. (g) Sun, H.-
Y.; Gorelsky, S. I.; Stuart, D. R.; Campeau, L.-C.; Fagnou, K. J. Org.
Chem. 2010, 75, 8180−8189. (h) Ackermann, L. Chem. Rev. 2011, 111,
1315−1345. (i) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Org. Chem.
2012, 77, 658−668.
(7) The mechanism was further supported by analogy to CoIII-
promoted arene C−H oxidation: Kochi, J. K.; Tang, R. T.; Bernath, T.
J. Am. Chem. Soc. 1973, 95, 7114−7123.
(8) For an extensive review of such reactions, see ref 1a. For selected
examples, see: (a) Uemura, T.; Imoto, S.; Chatani, N. Chem. Lett.
2006, 35, 842−843. (b) Brasche, G.; Buchwald, S. L. Angew. Chem., Int.
Ed. 2008, 47, 1932−1934. (c) Ueda, S.; Nagasawa, H. Angew. Chem.,
Int. Ed. 2008, 47, 6411−6413. (d) Hamada, T.; Ye, X.; Stahl, S. S. J.
Am. Chem. Soc. 2008, 130, 833−835. (e) Do, H.-Q.; Daugulis, O. J.
Am. Chem. Soc. 2009, 131, 17052−17053. (f) Monguchi, D.; Fujiwara,
T.; Furukawa, H.; Mori, A. Org. Lett. 2009, 11, 1607−1610. (g) Wang,
Q.; Schreiber, S. L. Org. Lett. 2009, 11, 5178−5180. (h) Mizuhara, T.;
Inuki, S.; Oishi, S.; Fujii, N.; Ohno, H. Chem. Commun. 2009, 3413−
3415. (i) Zhang, C.; Jiao, N. J. Am. Chem. Soc. 2010, 132, 28−29.
(j) Wang, W.; Luo, F.; Zhang, S.; Cheng, J. J. Org. Chem. 2010, 75,
2415−2418. (k) Wang, H.; Wang, Y.; Peng, C.; Zhang, J.; Zhu, Q. J.
Am. Chem. Soc. 2010, 132, 13217−13219. (l) Matsuyama, N.; Kitahara,
M.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2010, 12, 2358−2361.
(m) John, A.; Nicholas, K. M. J. Org. Chem. 2011, 76, 4158−4162.
(n) Guru, M. M.; Punniyamurthy, T. J. Org. Chem. 2012, 77, 5063−
5073. (o) Ding, S.; Yan, Y.; Jiao, N. Chem. Commun. 2013, 49, 4250−
4252.
(20) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101−
194118.
(21) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B
2009, 113, 6378−6396.
(22) C−H activation by CuIII has been proposed in the presence of
hypervalent iodine reagents: (a) Phipps, R. J.; Grimster, N. P.; Gaunt,
M. J. J. Am. Chem. Soc. 2008, 130, 8172−8174. (b) Phipps, R. J.;
Gaunt, M. J. Science 2009, 323, 1593−1597. (c) Cho, S. H.; Yoon, J.;
Chang, S. J. Am. Chem. Soc. 2011, 133, 5996−6005. (d) Chen, B.;
Hou, X.-L.; Li, Y.-X.; Wu, Y.-D. J. Am. Chem. Soc. 2011, 133, 7668−
7671.
(9) For leading references, see: (a) Furuta, H.; Maeda, H.; Osuka, A.
J. Am. Chem. Soc. 2000, 122, 803−807. (b) Chmielewski, P. J.; Latos-
́
Grazynski, L.; Schmidt, I. Inorg. Chem. 2000, 39, 5475−5482.
̇
(c) Furuta, H.; Ishizuka, T.; Osuka, A.; Uwatoko, Y.; Ishikawa, Y.
Angew. Chem., Int. Ed. 2001, 40, 2323−2325. (d) Maeda, H.; Ishikawa,
Y.; Matsuda, T.; Osuka, A.; Furuta, H. J. Am. Chem. Soc. 2003, 125,
11822−11823. (e) Pawlicki, M.; Kan
Chem. 2007, 46, 6575−6584.
ska, I.; Latos-Grazynski, L. Inorg.
̇
(10) (a) Ribas, X.; Jackson, D. A.; Donnadieu, B.; Mahía, J.; Parella,
T.; Xifra, R.; Hedman, B.; Hodgson, K. O.; Llobet, A.; Stack, T. D. P.
Angew. Chem., Int. Ed. 2002, 41, 2991−2994. (b) Xifra, R.; Ribas, X.;
̀
Llobet, A.; Poater, A.; Duran, M.; Sola, M.; Stack, T. D. P.; Benet-
Buchholz, J.; Donnadieu, B.; Mahía, J.; Parella, T. Chem.Eur. J. 2005,
11, 5146−5156. (c) Ribas, X.; Calle, C.; Poater, A.; Casitas, A.;
Gom
Mitrikas, G.; Sola,
2010, 132, 12299−12306.
(11) For a related macrocyclic arene, see: Yao, B.; Wang, D.-X.;
Huang, Z.-T.; Wang, M.-X. Chem. Commun. 2009, 45, 2899−2901.
́
ez, L.; Xifra, R.; Parella, T.; Benet-Buchholz, J.; Schweiger, A.;
̀
M.; Llobet, A.; Stack, T. D. P. J. Am. Chem. Soc.
H
dx.doi.org/10.1021/ja4026424 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX