D
C. Zhao, M. P. Sibi
Letter
Synlett
Funding Information
(d) Vallavoju, N.; Selvakumar, S.; Jockusch, S.; Sibi, M. P.;
Sivaguru, J. Angew. Chem. Int. Ed. 2014, 53, 5604. (e) Rono, L. J.;
Yayla, H. G.; Wang, D. Y.; Armstrong, M. F.; Knowles, R. R. J. Am.
Chem. Soc. 2013, 135, 17735. (f) Nishida, M.; Hayashi, H.;
Nishida, A.; Kawahara, N. Chem. Commun. 1996, 579. (g) Du, J.;
Skubi, K. L.; Schultz, D. M.; Yoon, T. P. Science 2014, 344, 392.
(h) Lee, S.; Kim, S. Tetrahedron Lett. 2009, 50, 3345. (i) Jang, D.
O.; Kim, S. Y. J. Am. Chem. Soc. 2008, 130, 16152.
This research was partially supported by funds from NIH RO1-54656.
Secinces
N
oaitItGnsueoaitlfe
n
Meraledcai
l
5(4
6
56)
Acknowledgment
We thank North Dakota State University for their support. We thank
Hari Subramanian for technical assistance.
(9) For selected recent reviews, see: (a) Park, J.; Hong, S. Chem. Soc.
Rev. 2012, 41, 6931. (b) Shaw, S.; White, J. D. Synthesis 2016, 48,
2768. (c) Also see: Bandini, M.; Fagioli, M.; Garavelli, M.;
Melloni, A.; Trigari, V.; Umani-Ronchi, A. J. Org. Chem. 2004, 69,
7511. (d) Wu, S.; Tang, J.; Han, J.; Mao, D.; Liu, X.; Gao, X.; Yu, J.;
Wang, L. Tetrahedron 2014, 70, 5986.
Supporting Information
Supporting information for this article is available online at
(10) For the installation of contiguous chiral centers in radical reac-
tions, see: (a) Sibi, M. P.; Chen, J. J. Am. Chem. Soc. 2001, 123,
9472. (b) Sibi, M. P.; Petrovic, G.; Zimmerman, J. J. Am. Chem.
Soc. 2005, 127, 2390. (c) He, L.; Srikanth, G. S. C.; Castle, S. L.
J. Org. Chem. 2005, 70, 8140. (d) Banerjee, B.; Capps, S. G.; Kang,
J.; Robinson, J. W.; Castle, S. L. J. Org. Chem. 2008, 73, 8973.
(e) Lee, J. Y.; Kim, S.; Kim, S. Tetrahedron Lett. 2010, 51, 4947.
(f) Graham, T. H.; Jones, C. M.; Jui, N. T.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2008, 130, 16494.
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
ortioInfgrmoaitn
References and Notes
(1) Beijing Pharmin Technology Company Limited, Room 202, Unit
2, Huilongsen Park, No 99, Kechuang 14th Street, Beijing Eco-
nomic-Technological Development Area, Beijing, 101111, P. R. of
China.
(11) All the starting enones and lactones used in this study are
known in the literature, see Supporting Information.
(2) (a) Asymmetric Synthesis II: The Essentials, 2nd ed.; Christmann,
M.; Bräse, S., Eds.; Wiley-VCH: Weinheim, 2007. (b) Asymmetric
Synthesis II, 2nd ed; Christmann, M.; Bräse, S., Eds.; Wiley-VCH:
Weinheim, 2012. (c) Fundamentals of Asymmetric Catalysis;
Walsh, P. J.; Kozlowski, M. C., Eds.; University Science Books:
Sausalito, CA, 2009.
(12) (a) Yorimitsu, H.; Oshima, K. In Radicals in Organic Synthesis;
Renaud, P.; Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001, 11.
(b) Renaud, P. In Encyclopedia of Radicals in Chemistry, Biology
1
V
o.l
and Materials;
1
V
o.
l
Chatgilialoglu, C.; Studer, A., Eds.; Wiley: New
York, NY, 2012, 601. (c) Curran, D. P.; McFadden, T. R. J. Am.
Chem. Soc. 2016, 138, 7741.
(3) (a) Renaud, P.; Sibi, M. P. Radicals in Organic Synthesis;a1nV2od.
l
Wiley-
VCH: Weinheim, 2001. (b) Stereochemistry of Radical Reactions;
Curran, D. P.; Porter, N. A.; Giese, B., Eds.; VCH: Weinheim,
1995. (c) Encyclopedia of Radicals in Chemistry, Biology and
Materials; Chatgilialoglu, C.; Studer, A., Eds.; Wiley-VCH: Wein-
heim, 2012.
(13) A variety of 3+ and 2+ chiral Lewis acids were screened with
modest success; see Supporting Information for details.
(14) Sibi, M. P.; Nad, S. Angew. Chem. Int. Ed. 2007, 46, 9231.
(15) Urabe, H.; Yamashita, K.; Suzuki, K.; Kobayashi, K.; Sato, F. J. Org.
Chem. 1995, 60, 3576.
(4) (a) Srikanth, G. S. C.; Castle, S. L. Tetrahedron 2005, 61, 10377.
(b) Zimmerman, J.; Sibi, M. P. Top. Curr. Chem. 2006, 263, 107.
(c) Sibi, M. P.; Manyem, S. Tetrahedron 2000, 56, 8033. (d) Sibi,
M. P.; Porter, N. A. Acc. Chem. Res. 1999, 32, 163. (e) Sibi, M. P.;
Manyem, S.; Zimmerman, J. Chem. Rev. 2003, 103, 3263.
(5) For selected examples, see: (a) Sibi, M. P.; Ji, J. G.; Wu, J. H.;
Gürtler, S.; Porter, N. A. J. Am. Chem. Soc. 1996, 118, 9200.
(b) Sibi, M. P.; Ji, J. G. J. Org. Chem. 1997, 62, 3800. (c) Sibi, M. P.;
Zimmerman, J. J. Am. Chem. Soc. 2006, 128, 13346. (d) Ruiz
Espelt, L.; McPherson, I. S.; Wiensch, E. M.; Yoon, T. P. J. Am.
Chem. Soc. 2015, 137, 2452. (e) Zhang, L.; Meggers, E. Acc. Chem.
Res. 2017, 50, 320. (f) Sibi, M. P.; Nie, X.; Shackleford, J. P.;
Stanley, L. M.; Bouret, F. Synlett 2008, 2655.
(6) (a) Asymmetric Organocatalysis: From Biomimetic Concepts to
Applications in Asymmetric Synthesis; Berkessel, A.; Gröger, H.,
Eds.; Wiley-VCH: Weinheim, 2005. (b) Enantioselective Organo-
catalysis: Reactions and Experimental Procedures; Dalko, P. I.,
Ed.; Wiley-VCH: Weinheim, 2007. (c) Prier, C. K.; Rankic, D. A.;
MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322. (d) Matsui, J. K.;
Lang, S. B.; Heitz, D. R.; Molander, G. A. ACS Catal. 2017, 7, 2563.
(7) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016,
81, 6898.
(16) For an example of conjugate addition of achiral copper reagent
to α-alkylidene cyclopentanone see: Borner, C.; Dennis, M. R.;
Sinn, E.; Woodward, S. Eur. J. Org. Chem. 2001, 2435.
(17) We have not established the relative stereochemistry of the
major isomer. As noted in ref. 14, we speculate that the newly
formed chiral center controls the stereochemistry of the H-atom-
transfer step.
(18) For stereochemical models of single-point binding substrates to
chiral salens, see: (a) Ref. 14. (b) Sibi, M. P.; Zimmerman, J. J. Am.
Chem. Soc. 2006, 128, 13346. (c) Hutson, G. E.; Turkman, Y. E.;
Rawal, V. H. J. Am. Chem. Soc. 2013, 135, 4988.
(19) Representative Procedure for Radical Addition
To a 6 dram vial were added substrate (0.3 mmol) and Lewis
acid 4 (0.09 mmol, 30 mol%). The vial was sealed with a septum,
the air was removed from the vial via a vacuum pump, nitrogen
was charged. To the mixture was then charged solvent (CH2Cl2,
8 mL), the mixture was stirred at r.t. for 20 min. Then the
mixture was cooled to –78 °C, radical precursor (1.5 mmol, 5
equiv), triethylborane solution (1.0 M in hexane, 1.2 mL, 4
equiv), tributyltin hydride (0.24 mL, 0.9 mmol, 3 equiv), and
oxygen gas (10 mL) were added successively via syringe. The
reaction was stirred at –78 °C for 2–3 h until TLC analysis indi-
cated disappearance of starting material. To the mixture was
added silica gel (3.6 g), the solvent was removed under reduced
pressure, the residue was first washed with hexanes (100 mL),
(8) For selected examples, see: (a) Hepburn, H. B.; Melchiorre, P.
Chem. Commun. 2016, 52, 3520. (b) Uraguchi, D.; Kinoshita, N.;
Kizu, T.; Ooi, T. J. Am. Chem. Soc. 2015, 137, 13768. (c) Guo, H.;
Herdweck, E.; Bach, T. Angew. Chem. Int. Ed. 2010, 49, 7782.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–E