10.1002/anie.202012687
Angewandte Chemie International Edition
RESEARCH ARTICLE
[7] W. P. Fan, P. Huang, X. Y. Chen, Chem. Soc. Rev. 2016, 45,
6488-6519.
[8] R. Weissleder, Nat. Biotechnol. 2001, 19, 316-317.
[9] J. Dai, Y. H. Li, Z. Long, R. M. Jiang, Z. Y. Zhuang, Z. M. Wang,
Z. J. Zhao, X. D. Lou, F. Xia, B. Z. Tang, ACS Nano 2020, 14,
854-866.
transaminase), ALT (alanine aminotransferase) and creatinine
activity levels were within the normal range (Figure 6G).[72]
Collectively, these results were taken as evidence that under the
conditions of study, EA-BPS is biocompatible and is likely to
benefit from by an acceptable safety profile.
In conclusion, one of the major limitations of PDT, and one
with severe clinical repercussions, is the fact that the endogenous
antioxidant system of mammalian cells serves to mitigate the
effects of ROS generation. In this study we have shown that an
EA-bearing photosensitizer conjugate (EA-BPS) that inter alia
reduces the effectiveness of GST-pi enhances the cytotoxicity of
PDT-derived ROS in cancer cells under both normoxic and
hypoxic conditions. In particular, synergistic therapeutic effects
were observed in a GST-pi overexpressing cancer cell line both
in vitro and in vivo. The enhanced effectiveness seen for EA-BPS
is ascribed to an ability to reduce the innate ROS detoxification
processes exploited by cancer cells, which makes hypoxic tumors
relatively less susceptible to PDT. Based on the results presented
here, we suggest that conjugates such as EA-BPS could prove
useful in harnessing the limited oxygen levels present in hypoxic
tumors thereby improving the performance of PDT. More broadly,
the present work serves to underscore how new rational design
approaches may be used to overcome the inherent limitations of
PDT.
[10] K. R. Deng, C. X. Li, S. S. Huang, B. G. Xing, D. Y. Jin, Q. G.
Zeng, Z. Y. Hou, J. Lin, Small 2017, 13, 1702299.
[11] M. R. Hamblin, Dalton Trans. 2018, 47, 8571-8580.
[12] S. S. Lucky, K. C. Soo, Y. Zhang, Chem. Rev. 2015, 115, 1990-
2042.
[13] C. M. Magalhaes, J. C. G. E. da Silva, L. P. da Silva,
Chemphyschem 2016, 17, 2286-2294.
[14] D. Mao, W. B. Wu, S. L. Ji, C. Chen, F. Hu, D. L. Kong, D. Ding,
B. Liu, Chem 2017, 3, 991-1007.
[15] Y. R. Kim, S. Kim, J. W. Choi, S. Y. Choi, S. H. Lee, H. Kim, S.
K. Hahn, G. Y. Koh, S. H. Yun, Theranostics 2015, 5, 805-817.
[16] H. S. Jung, J. Han, H. Shi, S. Koo, H. Singh, H. J. Kim, J. L.
Sessler, J. Y. Lee, J. H. Kim, J. S. Kim, J. Am. Chem. Soc. 2017,
139, 7595-7602.
[17] M. L. Li, J. Xia, R. S. Tian, J. Y. Wang, J. L. Fan, J. J. Du, S. Long,
X. Z. Song, J. W. Foley, X. J. Peng, J. Am. Chem. Soc. 2018,
140, 14851-14859.
[18] D. D. Zhang, L. W. Wen, R. Huang, H. H. Wang, X. L. Hu, D. Xing,
Biomaterials 2018, 153, 14-26.
[19] J. M. Brown, W. R. William, Nat. Rev. Cancer 2004, 4, 437-447.
[20] A. Sharma, J. F. Arambula, S. Koo, R. Kumar, H. Singh, J. L.
Sessler, J. S. Kim, Chem. Soc. Rev. 2019, 48, 771-813.
[21] K. Stepien, R. P. Ostrowski, E. Matyja, Med. Oncol. 2016, 33.
[22] M. Hockel, P. Vaupel, J. Natl. Cancer Inst. 2001, 93, 266-276.
[23] Z. H. Lu, J. W. Ma, B. Liu, C. G. Dai, T. Xie, X. Y. Ma, M. Li, J.
Dong, Q. Lan, Q. Huang, Cancer Med. 2016, 5, 3147-3155.
[24] Y. L. Chen, Y. N. Zhang, Z. Z. Wang, W. G. Xu, R. P. Li, J. D.
Zhang, Brain Res. 2016, 1635, 180-189.
[25] A. Hadanny, T. Zubari, L. Tamir-Adler, Y. Bechor, G. Fishlev, E.
Lang, N. Polak, J. Bergan, M. Friedman, S. Efrati, BMC Pulm.
Med. 2019, 19, 148.
[26] Y. H. Cheng, H. Cheng, C. X. Jiang, X. F. Qiu, K. K. Wang, W.
Huan, A. Yuan, J. H. Wu, Y. Q. Hu, Nat. Commun. 2015, 6, 8785.
[27] M. Yu, X. L. Xu, Y. J. Cai, L. Y. Zou, X. T. Shuai, Biomaterials
2018, 175, 61-71.
Acknowledgements
This work was supported by the National Research Foundation of
Korea (NRF) funded by the Ministry of Science and ICT (CRI
project
2019M3E5D1A01068998, J.S.K.) and funded by the Ministry of
Education (Basic Science Research Program
no.
2018R1A3B1052702
and
NRF-
2020R1A6A3A01100551, M.W. and 2020R1A6A3A01100558,
S.K.). A.S. thanks the Department of Biotechnology, New Delhi,
for a prestigious Ramalingaswami Fellowship 2019 (Grant No.
BT/RLF/Re-entry/59/2018). The Robert A. Welch Foundation (F-
0018 to J.L.S.) is also acknowledged.
[28] C. C. Huang, W. T. Chia, M. F. Chung, K. J. Lin, C. W. Hsiao, C.
Jin, W. H. Lim, C. C. Chen, H. W. Sung, J. Am. Chem. Soc. 2016,
138, 5222-5225.
[29] D. D. Wang, H. H. Wu, W. Q. Lim, S. Z. F. Phua, P. P. Xu, Q. W.
Chen, Z. Guo, Y. L. Zhao, Adv. Mater. 2019, 31, e1901893.
[30] R. R. Allison, Future Oncol. 2014, 10, 123-142.
[31] E. Laborde, Cell Death Differ. 2010, 17, 1373-1380.
[32] J. D. Hayes, J. U. Flanagan, I. R. Jowsey, Annu. Rev. Pharmacol.
Toxicol. 2005, 45, 51-88.
Conflict of interest
The authors declare no conflict of interest.
Keywords: Ethacrynic acid • Photodynamic therapy •
Glutathione S-transferase -pi • Reactive oxygen species •
BODIPY photosensitizer • Hypoxia
[33] B. Mannervik, P. G. Board, J. D. Hayes, I. Listowsky, W. R.
Pearson, Methods Enzymol. 2005, 401, 1-8.
[34] V. Adler, Z. M. Yin, S. Y. Fuchs, M. Benezra, L. Rosario, K. D.
Tew, M. R. Pincus, M. Sardana, C. J. Henderson, C. R. Wolf, R.
J. Davis, Z. Ronai, EMBO J. 1999, 18, 1321-1334.
[35] D. Chen, J. J. Liu, B. Rui, M. Gao, N. W. Zhao, S. Sun, A. J. Bi,
T. T. Yang, Y. T. Guo, Z. M. Yin, L. Luo, Biochim. Biophys. Acta,
Mol. Cell Res. 2014, 1843, 454-463.
[36] K. D. Tew, Y. Manevich, C. Grek, Y. Xiong, J. Uys, D. M.
Townsend, Free Radical Bio. Med. 2011, 51, 299-313.
[37] K. D. Tew, Cancer Res. 2016, 76, 7-9.
[38] N. Allocati, M. Masulli, C. Di Ilio, L. Federici, Oncogenesis 2018,
7, 8.
[39] V. Rapozzi, C. Lombardo, S. Cogoi, C. Comuzzi, L. Xodo,
ChemMedChem 2008, 3, 565-568.
[1] N. L. Oleinick, R. L. Morris, T. Belichenko, Photochem. Photobiol.
Sci. 2002, 1, 1-21.
[2] P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S.
O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel,
M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson,
J. Golab, Ca-Cancer J. Clin. 2011, 61, 250-281.
[3] W. P. Fan, N. Lu, C. Xu, Y. J. Liu, J. Lin, S. Wang, Z. Y. Shen, Z.
Yang, J. L. Qu, T. F. Wang, S. P. Chen, P. Huang, X. Y. Chen,
ACS Nano 2017, 11, 5864-5872.
[40] T. A. Theodossiou, C. E. Olsen, M. Jonsson, A. Kubin, J. S.
Hothersall, K. Berg, Redox Biol. 2017, 12, 191-197.
[41] M. J. Dabrowski, D. Maeda, J. Zebala, W. D. Lu, S. Mahajan, T.
J. Kavanagh, W. M. Atkins, Arch. Biochem. Biophys. 2006, 449,
94-103.
[42] L. Larue, B. Myrzakhmetov, A. Ben-Mihoub, A. Moussaron, N.
Thomas, P. Arnoux, F. Baros, R. Vanderesse, S. Acherar, C.
Frochot, Pharmaceuticals 2019, 12, 163.
[4] P. Baas, L. Murrer, F. A. N. Zoetmulder, F. A. Stewart, H. B. Ris,
N. vanZandwijk, J. L. Peterse, E. J. T. Rutgers, Br. J. Cancer
1997, 76, 819-826.
[5] L. Caesar, T. E. M. van Doeveren, I. B. Tan, A. Dilci, R. L. P. van
Veen, B. Karakullukcu, Photodiagn. Photodyn. Ther. 2015, 12,
414-421.
[6] T. E. M. van Doeveren, M. B. Karakullukcu, R. L. P. van Veen,
M. Lopez-Yurda, W. H. Schreuder, I. B. Tan, Laryngoscope 2018,
128, 657-663.
[43] G. C. Wall, D. Bigner, S. Craig, D. Moines, Arch. Intern. Med.
2003, 163, 116-117.
7
This article is protected by copyright. All rights reserved.