Catalytic H/D Exchange under Mild Conditions
Ru-cat 1: 5 mg (0.01 mmol, 1 mol-%), T = 50 °C, substrate: 178 mg basis set by Ahlrichs et al.[21] in the implementation that is used in
(1.0 mmol), 0.5 mL C6D6, 0.05 mL C6H12, t = 3 d; conversion: Ͻ
5% (C1), 7% (C2), 40% (C3, C4), Ͻ 5% (C5). 1H NMR (300 MHz,
C6H12/[D6]benzene, 25 °C, before H/D exchange): δ = 8.4 (17.6,
C5), 7.6 (15.9, C2), 7.4 (16.4, C1), 7.3 (31.5, C3/C4), 1.4 (100.0,
C6H12, internal standard) ppm. H NMR (300 MHz, C6H12/[D6]-
benzene, 25 °C, after H/D exchange): δ = 8.4 (16.9, C5), 7.6 (13.2,
the Gaussian03 program, while for ruthenium the Stuttgart/
Dresden (311111/22111/411) basis set and associated ECP was
used.[22] This basis set is denoted B1. For real complexes (i.e. tBu
substituents at P) all nonmetal atoms were calculated using the 6-
31G(d) basis set.[23] For the hydrogen centres bonded to the metal
(2 centres) and the hydrogen centre of the naphthalene taking part
1
C2), 7.4 (15.7, C1), 7.2 (1.9, C3/C4), 1.4 (100.0, C6H12, internal in the reaction (1 centre) polarization functions were added, so that
standard) ppm. 2H NMR (600 MHz, C6H12/[D6]benzene, 25 °C, af-
ter H/D exchange): δ = 7.3 (C3/C4) ppm.
these 3 hydrogen centres were calculated with the 6-31G(d,p) basis-
set. For the ruthenium centre a (441/2111/31/1) basis set[24a] in com-
bination with a nonrelativistic small core ECP was used.[24b] This
basis set is denoted B2. All stationary points were checked by fre-
quency calculations to prove the existence of local minima (zero
imaginary frequencies) or saddle points of order 1 (one imaginary
frequency). Calculations (geometry optimization followed by fre-
quency calculation, B3LYP/B2) in the presence of a solvent (ben-
zene) were carried out using the self-consistent reaction field
(SCRF) formalism, as implemented in Gaussian 03 employing the
IEF-PCM (integral equation formulation of the polarizable contin-
uum model).[25] together with the united atom topological model
for radii. Extra spheres for hydrogen were added for the hydrogen
centres present at the Ru center and the hydrogen centre of the
naphthalene involved in the reaction. During the geometry optimi-
zations and the subsequent frequency calculations, the calculation
of dispersion solute–solvent interaction energy, of repulsion solute–
solvent interaction energy, and of the cavitation energy were
switched off.
Isoquinoline 10: Ru-cat 1 (5 mg, 0.01 mmol, 1 mol-%), T = 50 °C,
substrate: 129 mg (1.0 mmol), 0.5 mL C6D6, 0.05 mL C6H12, t =
3 d. No conversion detectable.
Styrene 11
Ru-cat 1: 5 mg (0.01 mmol, 1 mol-%), T = 50 °C, substrate: 104 mg
(1.0 mmol), 0.5 mL C6D6, 0.05 mL C6H12, t = 3 d; conversion: 14%
1
(m), 74% (o/p), 35% (x), 86% (a), 88% (b). H NMR (300 MHz,
C6H12/[D6]benzene, 25 °C, before H/D exchange): δ = 7.0 (33.7, m),
6.8 (50.3, o/p), 6.3 (15.9, x), 5.3 (18.1, a), 4.8 (17.1, b), 1.2 (100.0,
1
C6H12, internal standard) ppm. H NMR (300 MHz, C6H12/[D6]-
benzene, 25 °C, after H/D exchange): δ = 7.0 (29.0, m), 6.8 (12.8,
o/p), 6.3 (10.4, x), 5.3 (2.5, a), 4.8 (2.0, b), 1.3 (100.0, C6H12, in-
ternal standard) ppm. 2H NMR (600 MHz, C6H12/[D6]benzene,
25 °C, after H/D exchange): δ = 7.3 (m), 7.1 (o/p), 6.6 (x), 5.6 (a),
5.1 (b) ppm.
Acknowledgments
The Mynott group (R. Ettl, C. Wirtz, W. Wisniewski, M. Stachel-
haus, B. Waßmuth and R. Mynott) is acknowledged for NMR and
IR experiments. RWTH Aachen, Max-Planck-Gesellschaft and
German–Israeli Project Cooperation (DIP G7.1) are gratefully ac-
knowledged for financial support. We are also grateful for generous
allocation of computer time by the Computation and Communica-
tion Centre of the RWTH Aachen.
Indene 12
Ru-cat 1: (5 mg, 0.01 mmol, 1 mol-%), T = 50 °C, substrate: 116 mg
(1.0 mmol), 0.5 mL C6D6, 0.05 mL C6H12, t = 3 d; conversion: 62%
(C1, C2), 27% (C3, C6), 69% (C7), 89% (C8), 76% (C9). 1H NMR
(300 MHz, C6H12/[D6]benzene, 25 °C, before H/D exchange): δ =
[1] P. J. Jessop, R. H. Morris, Coord. Chem. Rev. 1992, 121, 155–
284.
[2] S. Sabo-Etienne, B. Chaudret, Coord. Chem. Rev. 1998, 178–
7.3 (31.6, C1, C2), 7.3–7.1 (33.2, C3, C6), 6.7 (17.1, C7), 6.2 (14.9,
180, 381–407.
1
C8), 3.0 (42.0, C9), 1.4 (100.0, C6H12, internal standard) ppm. H [3] F. Kakiuchi, S. Murai, Acc. Chem. Res. 2002, 35, 826–834.
[4] a) J. T. Golden, R. A. Andersen, R. G. Bergman, J. Am. Chem.
Soc. 2001, 123, 5837–5838; b) S. R. Klei, J. T. Golden, T. D.
Tilley, R. G. Bergman, J. Am. Chem. Soc. 2002, 124, 2092–
2093; c) S. R. Klei, T. D. Tilley, R. G. Bergman, Organometal-
lics 2002, 21, 4905–4911; d) M. R. Skaddan, C. M. Yung, R. G.
Bergman, Org. Lett. 2004, 6, 11–13; e) C. M. Yung, M. R.
Skaddan, R. G. Bergman, J. Am. Chem. Soc. 2004, 126, 13033–
13043.
NMR (300 MHz, C6H12/[D6]benzene, 25 °C, after H/D exchange):
δ = 7.3 (23.1, C1, C2), 7.3–7.1 (12.7, C3, C6), 6.7 (5.3, C7), 6.2
(1.6, C8), 3.0 (10.0, C9), 1.4 (100.0, C6H12, internal standard) ppm.
2H NMR (600 MHz, C6H12/[D6]benzene, 25 °C, after H/D ex-
change): δ = 7.3 (C1, C2), 7.1–7.0 (C3, C6), 6.7 (C7), 6.2 (C8), 3.0
(C9) ppm.
Ferrocene 13: Ru-cat 1 (5 mg, 0.01 mmol, 1 mol-%), T = 50 °C, sub-
strate: 186 mg (1.0 mmol), 0.6 mL C6D6, 0.05 mL C6H12, t = 3 d;
[5] A. F. Thomas, Deuterium Labelling in Organic Chemistry 1971,
Meridith Cooperation, New York.
1
conversion: 25%. H NMR (300 MHz, C6H12/[D6]benzene, 25 °C,
[6] T. H. Lowry, K. S. Richardson, Mechanism and Theory in Or-
ganic Chemistry 1987, Harper and Row, New York.
[7] B. Rybtchinski, R. Cohen, Y. Ben-David, J. M. L. Martin, D.
Milstein, J. Am. Chem. Soc. 2003, 125, 11041–11050.
[8] a) C. P. Lenges, P. S. White, M. Brookhart, J. Am. Chem. Soc.
1999, 121, 4385–4396; b) B. McAuley, M. J. Hockey, L. P.
Kingston, J. R. Jones, W. J. S. Lockley, A. N. Mather, E. Spink,
S. P. Thompson, D. J. Wilkinson, J. Labelled Compd. Ra-
diopharm. 2003, 46, 1191–1204; c) J. Krüger, B. Manmontri, G.
Fels, Eur. J. Org. Chem. 2005, 1402–1408; d) Q.-X. Guo, B.-J.
Shen, H.-Q. Guo, T. Takahashi, Chin. J. Chem. 2005, 23, 341–
344.
before H/D exchange): δ = 4.0 (35.2, Cp-H), 1.4 (100.0, C6H12,
internal standard) ppm. H NMR (300 MHz, C6H12/[D6]benzene,
25 °C, after H/D exchange): δ = 3.7 (26.5, Cp-H), 1.4 (100.0, C6H12,
internal standard) ppm. 2H NMR (600 MHz, C6H12/[D6]-
benzene, 25 °C, after H/D exchange): δ = 4.0 (Cp-D) ppm.
1
Computational Studies: The calculations reported herein were car-
ried out with the Gaussian 03 program series (revision C02).[19]
Local minima and transition states were calculated employing the
B3LYP hybrid functional.[20] For model complexes (i.e. Me substit-
uents at P) all nonmetal atoms were calculated using the TZVP
Eur. J. Inorg. Chem. 2008, 3493–3500
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
3499