C-Glycosyl Tyrosines
J . Org. Chem., Vol. 64, No. 15, 1999 5459
6.4, γ′-H), 2.10, 2.09, 2.08, 2.04, 2.03 (5 × 3 H, s, COCH3), 1.41
(9 H, s, (CH3)3C); 13C NMR (75 MHz, CDCl3) δ 171.7 (COCH2),
170.7, 170.6, 170.2, 170.1, 169.6 (5 × COCH3), 155.0 (OCON),
136.4, 135.2, 134.1, 132.6 (2-C), 129.4, 128.6, 128.5, 128.4,
128.0, 123.7 (3-C), 94.3 (1′-C), 79.9 ((CH3)3C), 73.2 (1-C), 70.8
(2′-C), 70.0, 69.95, 69.9, 68.0 (3′-C, 4-C, 5-C, 5′-C), 68.3 (4′-C),
67.1 (PhCH2), 63.5, 61.8 (6-C, 6′-C), 54.4 (R-C), 39.2, 37.9 (â-
C, γ-C), 28.3 ((CH3)3C), 20.8-20.1, (5 × C, COCH3, signals not
cleanly resolved); MS (ESI+) m/z 892.4 (M + Na+, 56%), 870.4
signals not cleanly resolved, COCH3), 155.0 (OCON), 135.3,
135.1, 134.3, 129.5, 129.1, 128.5, 128.4, 128.37, 95.8 (1′-C), 79.8
((CH3)3C), 75.1, 71.4, 71.2, 71.0 (1-C, 3-C, 4-C, 5-C), 70.0 (2′-
C), 69.6 (2-C), 69.5 (3′-C), 68.4 (5′-C), 68.0 (4′-C), 67.0 (PhCH2),
62.9 (6-C), 61.4 (6′-C), 54.4 (R-C), 37.7 (â-C), 35.3 (γ-C), 28.2
((CH3)3C), 20.8, 20.7, 20.65, 20.6, 20.55, 20.5, 20.4 (7 ×
COCH3); δC (75 MHz, C6D6) 171.8 (COCH2), 170.2, 170.1, 170.0,
169.7, 169.6, 169.3 (7 × C, COCH3), 155.3 (OCON), 136.0,
135.8, 134.9, 129.7, 129.6, 128.7, 128.65, 96.4 (1′-C), 79.4
((CH3)3C), 75.8 (1-C), 72.0 (3-C, 4-C), 71.5 (5-C), 70.9 (2′-C),
70.2 (2 × C, 2-C), 70.0 (3′-C), 69.2 (5′-C), 68.9 (4′-C), 66.9
(PhCH2), 63.2 (6′-C), 62.0 (6-C), 55.0 (R-C), 37.9 (â-C), 35.2 (γ-
C), 28.3 ((CH3)3C), 20.8, 20.4, 20.35, 20.3, 20.25, 20.2, 20.1 (7
× COCH3); MS (FAB+) m/z 1011 (M + Na+, 30%), 989 (M +
H+, 5), 888 [(M + H2 - Boc)+, 100]; HRMS for C43H54NO19 (M
+ H2 - Boc)+ calcd 888.3290, found 888.3296.
4′-(5-O-Acetyl-2,6-a n h yd r o-1,3,4,7-tetr a d eoxy-r-L-er yth -
r o-h ep t-3-en itol-1-yl) iod oben zen e (r-3c) a n d 4′-(5-O-
a cetyl-2,6-a n h yd r o-1,3,4,7-tetr a d eoxy-â-L-erythro-h ep t-3-
en itol-1-yl) iod oben zen e (â-3c). Zinc dust (2.95 g, 0.05
mmol) was activated according to general procedure A, using
dry THF (2.5 mL), 1,2-dibromoethane (156 µL, 1.81 mmol),
and TMSCl (172 µL, 1.36 mmol). A solution of 4-iodobenzyl
bromide (6.71 g, 0.02 mmol) in dry THF (10 mL) was added
dropwise, over 1 h, to the stirred suspension of activated zinc
at 0 °C under argon in the dark. After addition was complete,
TLC (ethyl acetate-light petroleum, 1:5) indicated no iodide
(Rf 0.8) remained and the mixture was warmed to room
temperature and allowed to settle. The zincate solution was
transferred away from unreacted zinc via a gastight syringe
into a flask purged with argon, and the solvent was removed
in vacuo (bath temp 35 °C). Dry dichloromethane (10 mL) was
added to the residue, and the solution was cooled to -30 °C
under argon in the dark. A solution of 3,4-di-O-acetyl-L-
rhamnal (2c) (2.85 g, 13 mmol) was added to the zincate,
followed by BF3‚OEt2 (6.52 mL, 0.05 mmol). The mixture was
immediately warmed to 0 oC and stirred for 15 min, after which
time TLC (ethyl acetate-light petroleum, 1:3) indicated no
rhamnal (2c) (Rf 0.4) and a major product (Rf 0.3). The reaction
mixture was warmed to room temperature, then diluted with
dichloromethane (20 mL), and washed with brine (30 mL); the
organic layer was dried (Na2SO4) and filtered; and the solvent
was removed in vacuo. The residue was purified by flash
chromatography (ethyl acetate-light petroleum, 1:9) to afford
(3c) (1.8 g, 37%) as a 2:1 mixture of R/â isomers as determined
by 1H NMR analysis. Further flash chromatography (ethyl
acetate-light petroleum, 1:9) afforded pure 4′-(5-O-acetyl-2,6-
anhydro-1,3,4,7-tetradeoxy-â-L-erythro-hept-3-enitol-1-yl)iodo-
benzene (â-3c), as a colorless oil. [R]D26 -1.1 (c 1.0, CHCl3); IR
(film) 1736vs (CdO), 1484s, 1372s, 1238s (C-O), 1043s, 1007s
cm-1; 1H NMR (300 MHz, CDCl3) δ 7.61 (2 H, d, J 8.4, Ar o-I),
6.99 (2 H, d, J 8.4, Ar m-I), 5.74 (1 H, ddd, J 3,4 10.3, J 2,3 or J 3,5
1.3, J 2,3 or J 3,5 1.7, 3-H), 5.67 (1 H, dt, J 3,4 10.3, J 4,5 and J 2,4
1.8, 4-H), 5.02 (1 H, m, 5-H), 4.31 (1 H, m, 2-H), 3.56 (1 H, dq,
(M + H+, 10), 770.3 [(M + H2 - Boc)+, 100]; HRMS for C39H48
NO15 (M + H2 - Boc)+ calcd 770.3024, found, 770.3018.
-
Nr-(ter t-Bu toxyca r bon yl)-C-[(2′,3′,4′,6′-tetr a -O-a cetyl-
r-D-glu cop yr a n osyl)-(1′f4)-(2,3,6-t r i-O-a cet yl-r-D-m a n -
n op yr a n osyl)]-L-tyr osin e Ben zyl Ester (6b). N-Methyl-
morpholine N-oxide (67 mg, 0.57 mmol) and then OsO4 (2.5
wt % in tert-BuOH, 595 µL, 0.05 mmol) were added to a stirred
solution of NR-(tert-butoxycarbonyl)-C-[(2′,3′,4′,6′-tetra-O-acetyl-
R-D-glucopyranosyl)-(1′f4)-(6-O-acetyl-2,3-dideoxy-R-D-erythro-
hex-2-enopyranosyl)]-L-tyrosine benzyl ester (5b) (413 mg, 0.47
mmol) in acetone-water (5:1, 6 mL) at room temperature.
After 24 h, TLC (ethyl acetate-light petroleum, 3:1) indicated
no starting material (Rf 0.7) and product (Rf 0.2). Sodium
metabisulfite (9 mg, 0.05 mmol) in water (1.0 mL) and Florisil
(60-100 mesh, 50 mg) were added, and the mixture was
stirred vigorously for 0.5 h. Ethyl acetate (50 mL) and brine
(10 mL) were added, and the aqueous layer was extracted with
ethyl acetate (2 × 20 mL). The combined extracts were dried
(Na2SO4) and filtered, and the solvent was removed in vacuo.
The residue was dissolved in dry pyridine (5 mL) and cooled
to 0 °C under nitrogen. DMAP (3 mg, 0.02 mmol) was added,
followed by dropwise addition of acetic anhydride (0.23 mL,
2.44 mmol) over 1 min. After 0.5 h of stirring at 0 °C, the
reaction mixture was warmed to room temperature. After 0.5
h at room temperature, the mixture was cooled to 0 °C and
quenched by the addition of water (2 mL). After the reaction
mixture was warmed to room temperature, brine (3 mL) was
added and the aqueous layer was extracted with ethyl acetate
(3 × 15 mL). The combined extracts were washed with 2 M
hydrochloric acid (7 × 5 mL), dried (Na2SO4), and filtered, and
the solvent was removed in vacuo (toluene azeotrope × 3). The
residue was purified by flash chromatography (ethyl acetate-
light petroleum, 1:1) to afford NR-(tert-butoxycarbonyl)-C-
[(2′,3′,4′,6′-tetra-O-acetyl-R-D-glucopyranosyl)-(1′f4)-(2,3,6-tri-
O-acetyl-R-D-mannopyranosyl)]-L-tyrosine benzyl ester (6b)
(252 mg, 54%), as a colorless foam: [R]D30 +50.8 (c 2.1, CHCl3);
IR (KBr) 3396br (N-H), 2975w, 1748vs (CdO), 1716s (CdO),
1369s, 1239vs (C-O), 1166m, 1041vs cm-1; 1H NMR (300 MHz,
CDCl3) δ 7.39-7.29 (5 H, m, Ph), 7.13 (2 H, d, J 7.6, Ar), 7.00
(2 H, d, J 7.6, Ar), 5.47 (1 H, d, J 1′,2′ 4.1, 1′-H), 5.45 (1 H, t,
J 2′,3′ ) J 3′,4′ 10.0, 3′-H), 5.27 (1 H, dd, J 3,4 7.8, J 2,3 3.0, 3-H),
5.18 (1 H, t, J 1,2 ) J 2,3 3.0, 2-H), 5.17 (1 H, d, J 12.2, PhCHH′),
5.11 (1 H, d, J 12.2, PhCHH′), 5.08 (1 H, t, J 3′,4′ ) J 4′,5′ 10.0,
4′-H), 5.00 (1 H, d, J NH,CHR 7.8, NH), 4.92 (1 H, dd, J 2′,3′ 10.0,
J 1′,2′ 4.1, 2′-H), 4.60 (1 H, dt, J NH,CHR 7.8, J CHR,CHâ ) J CHR,CHâ′
6.0, R-H), 4.35-4.22 (3 H, m, 6-Ha, 6-Hb, 6′-Ha), 4.14-4.01 (5
H, m, 1-H, 4-H, 5-H, 5′-H, 6′-Hb), 3.09 (1 H, dd, J CHâ,CHâ′ 14.0,
J
5,6 5.7, J 6,7 6.2, 6-H), 2.85 (1 H, dd, J 1a,1b 13.7, J 1a,2 6.7, 1-Ha),
2.68 (1 H, dd, J 1a,1b 13.7, J 1b,2 6.6, 1-Hb), 2.07 (3 H, s, COCH3),
1.23 (3 H, d, J 6,7 6.2, CH3); 13C NMR (75 MHz, CDCl3) δ 170.6
(COCH3), 137.2 (Ar o-I, Cipso), 131.7 (Ar m-I), 131.6 (3-C), 126.0
(4-C), 91.8 (C-I), 75.1 (2-C), 72.4 (6-C), 71.0 (5-C), 41.3 (1-C),
21.1 (COCH3), 18.4 (CH3); MS (EI) m/z 373 (M + H+, 3%), 217
(p-ITol+, 88), 95 [(M - (p-ITol) - AcOH)+, 34] HRMS for
J
CHR,CHâ 6.0, â-H), 3.05-2.99 (2 H, m, J CHγ,CHγ′ 14.2, â′-H, γ-H),
2.90 (1 H, dd, J CHγ,CHγ′ 14.2, J 1,CHγ′ 5.6, γ′-H), 2.10, 2.08 (2 × 3
H, s, COCH3), 2.05 (6 H, s, 2 × COCH3), 2.04, 2.03, 2.02 (3 ×
3 H, s, COCH3), 1.42 (9 H, s, (CH3)3C); δH (400 MHz, C6D6)
7.15-6.84 (9 H, m, Ar), 5.90 (1 H, t, J 2′,3′ ) J 3′,4′ 10.0, 3′-H),
5.66 (1 H, d, J 1′,2′ 4.4, 1′-H), 5.49 (1 H, dd, J 3,4 8.0, J 2,3 3.0,
3-H), 5.39 (1 H, t, J 1,2 ) J 2,3 3.0, 2-H), 5.36 (1 H, t, J 3′,4′ ) J 4′,5′
10.0, 4′-H), 5.08 (1 H, dd, J 2′,3′ 10.0, J 1′,2′ 4.4, 2′-H), 5.02 (1 H,
d, J NH,CHR 8.4, NH), 4.95 (1 H, d, J 12.4, PhCHH′), 4.85 (1 H,
d, J 12.4, PhCHH′), 4.70 (1 H, ddd, J NH,CHR 8.4, J CHR,CHâ′ 6.6,
J CHR,CHâ 5.9, R-H), 4.40 (1 H, dd, J 6a,6b 12.1, J 5,6a 5.5, 6-Ha),
4.36-4.29 (3 H, m, 5′-H, 6′-Ha, 6′-Hb), 4.25 (1 H, dd, J 6a,6b 12.1,
J 5,6b 3.0, 6-Hb), 4.18 (1 H, t, J 3,4 ) J 4,5 8.0, 4-H), 4.02 (1 H, m,
1-H), 3.78 (1 H, m, J 5,6b 3.0, 5-H), 2.94 (1 H, dd, J CHâ,CHâ′ 13.9,
J CHR,CHâ 5.9, â-H), 2.80 (1 H, dd, J CHâ,CHâ′ 13.9, J CHR,CHâ′ 6.6,
â′-H),_2.62 (1 H, dd, J CHγ,CHγ′ 14.3, J 1,CHγ 8.8, γ-H), 2.46 (1 H,
dd, J CHγ,CHγ′ 14.3, J 1,CHγ′ 5.9, γ′-H), 1.94, 1.86, 1.77, 1.76, 1.70,
1.68, 1.58 (7 × 3 H, s, COCH3), 1.37 (9 H, s, (CH3)3C); 13C NMR
(100 MHz, CDCl3) δ 171.6 (COCH2), 170.5-169.4 (7 × C,
C
15H17IO3 (M+) calcd 372.0222, found 372.0237. Anal. Calcd
for C15H17IO3: 48.4; H, 4.6. Found: 48.3; H, 4.7.
Continued elution gave 4′-(5-O-acetyl-2,6-anhydro-1,3,4,7-
tetradeoxy-â-L-erythro-hept-3-enitol-1-yl)iodobenzene (R-3c), as
26
a colorless oil: [R]D -107.3 (c 1.2, CHCl3); IR (film) 1732vs
(CdO), 1484s, 1371s, 1238s (C-O), 1041s, 1007s cm-1 1H
;
NMR (300 MHz, CDCl3) δ 7.62 (2 H, d, J 8.2, Ar o-I), 6.98 (2
H, d, J 8.2, Ar m-I), 5.82 (1 H, ddd, J 3,4 10.4, J 2,3 or J 3,5 1.1,
J 2,3 or J 3,5 2.2 3-H), 5.79 (1 H, ddd, J 3,4 10.4, J 4,5 or J 2,4 3.1,
J 4,5 or J 2,4 1.8 4-H), 4.89 (1 H, m, 5-H), 4.34 (1 H, m, 2-H),
3.93 (1 H, dq, J 5,6 5.0, J 6,7 6.2, 6-H), 2.94 (1 H, dd, J 1a,1b 13.7,
J 1a,2 7.5, 1-Ha), 2.75 (1 H, dd, J 1a,1b 13.7, J 1b,2 6.6, 1-Hb), 2.09
(3 H, s, COCH3), 1.23 (3 H, d, J 6,7 6.2, CH3); 13C NMR (75 MHz,
CDCl3) δ 170.7 (COCH3), 137.5 (Ar o-I, Cipso), 131.4 (Ar m-I),