Journal of the American Chemical Society
Page 4 of 6
(3) Lang, K.; Chin, J. W. ACS Chem. Biol. 2014, 9, 16.
(4) Shih, HꢀW.; Kamber, D. N.; Prescher, J. A. Curr. Opin. Chem.
Biol. 2014, 21, 103.
(5) Patterson, D. M.; Nazarova, L. A.; Xie, B.; Kamber, D. N.;
Prescher, J. A. J. Am. Chem. Soc. 2012, 134, 18638.
(6) Yang, J.; Šečkutė, J.; Cole, C. M.; Devaraj, N. K. Angew.
Chem. Int. Ed. 2012, 51, 7476.
(7) Yu, Z.; Pan, Y.; Wang, Z.; Wang, J.; Lin, Q. Angew. Chem.
Int. Ed. 2012, 51, 10600.
(8) Kamber, D. N.; Nazarova, L. A.; Liang, Y.; Lopez, S. A.;
Patterson, D. M.; Shih, HꢀW.; Houk, K. N.; Prescher, J. A. J. Am.
Chem. Soc. 2013, 135, 13680.
(9) Elliott, T. S.; Townsley, F. M.; Bianco, A.; Ernst, R. J.;
Sachdeva, A.; Elsasser, S. J.; Davis, L.; Lang, K.; Pisa, R.; Greiss,
S.; Lilley, K. S.; Chin, J. W. Nat. Biotechnol. 2014, 32, 465.
(10) Šečkutė, J.; Yang, J.; Devaraj, N. K. Nucleic Acids Res.
2013, 41, e148.
(11) Patterson, D. M.; Jones, K. A.; Prescher, J. A. Mol. BioSyst.
2014, 10, 1693.
(12) Xiong, D. C.; Zhu, J.; Han, M. J.; Luo, H. X.; Wang, C.; Yu,
Y.; Ye, Y.; Tai, G.; Ye, X. S. Org. Biomol. Chem. 2015, 13, 3911.
(13) Sachdeva, A.; Wang, K.; Elliott, T.; Chin, J. W. J. Am.
Chem. Soc. 2014.
(14) Devaraj, N. K.; Weissleder, R. Acc. Chem. Res. 2011, 44,
816.
(15) Liu, F.; Liang, Y.; Houk, K. N. J. Am. Chem. Soc. 2014, 136,
11483.
(16) Šečkutė, J.; Devaraj, N. K. Curr. Opin. Chem. Biol. 2013, 17,
761.
(17) Blackman, M. L.; Royzen, M.; Fox, J. M. J. Am. Chem. Soc.
2008, 130, 13518.
(18) Karver, M. R.; Weissleder, R.; Hilderbrand, S. A.
Bioconjugate Chem. 2011, 22, 2263.
(19) Liu, D. S.; Tangpeerachaikul, A.; Selvaraj, R.; Taylor, M. T.;
Fox, J. M.; Ting, A. Y. J. Am. Chem. Soc. 2012, 134, 792.
(20) Yang, J.; Liang, Y.; Šečkutė, J.; Houk, K. N.; Devaraj, N. K.
Chem. Eur. J. 2014, 20, 3365.
(21) Daves, G. D.; Robins, R. K.; Cheng, C. C. J. Am. Chem. Soc.
1961, 83, 3904.
(22) Liao, T. K.; Baiocchi, F.; Cheng, C. C. J. Org. Chem. 1966,
31, 900.
(23) Taylor, E. C.; Sowinski, F. J. Org. Chem. 1975, 40, 2321.
(24) Boger, D. L.; Panek, J. S. J. Org. Chem. 1981, 46, 2179.
(25) Steigel, A.; Sauer, J. Tetrahedron Lett. 1970, 3357.
(26) Boger, D. L. Chem. Rev. 1986, 86, 781.
(27) Boger, D. L. Tetrahedron 1983, 39, 2869.
(28) Neunhoeffer, H.; Frühauf, H.ꢀW. Tetrahedron Lett. 1969, 10,
3151.
(29) Dittmar, W.; Sauer, J.; Steigel, A. Tetrahedron Lett. 1969,
10, 5171.
(30) Anderson, E. D.; Boger, D. L. J. Am. Chem. Soc. 2011, 133,
12285.
(31) Frisch, M. J. T., et al. Gaussian 09, revision D.01; Gaussian
Inc.: Wallingford, CT 2013.
(32) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
(33) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.
(34) Kämpchen, T. M., W.; Overheu, W.; Schmidt, R.; Seitz, G.
Chem. Ber. 1982, 115, 683.
(35) Karver, M. R.; Weissleder, R.; Hilderbrand, S. A. Angew.
Chem. Int. Ed. 2012, 51, 920.
(36) Liang, Y.; Mackey, J. L.; Lopez, S. A.; Liu, F.; Houk, K. N.
J. Am. Chem. Soc. 2012, 134, 17904.
analysis. Native GFPꢀwt has a mass of 27826.0 ±1 Da
and GFPꢀ16 exhibited the expected increase to
27939.1±1 Da, verifying that 16 is incorporated at a sinꢀ
gle site (Figures 3C and S24). To determine whether the
triazine/TCO ligation is also quantitative on proteins,
pure GFPꢀ16 (10 µM) was incubated with TCO 17 (1
mM) in PBS (pH 7.0). ESIꢀQ mass analysis confirmed
quantitative conversion of GFPꢀ16 to GFPꢀ16+17 (exꢀ
pected 28120.7 Da; observed 28120.1±1 Da, Figure 3C).
These results demonstrate that triazines are stable in
cells and can be incorporated into proteins efficiently
and with high fidelity using genetic code expansion.
Furthermore, the triazine/TCO ligation is suitable for
siteꢀspecific protein labeling applications.
In summary, we identified 1,2,4ꢀtriazines as a new
class of bioorthogonal reagents. These scaffolds are reꢀ
markably stable in aqueous buffers, in the presence of
biological nucleophiles, and in cells. Triazines can be
easily assembled and decorated with diverse functional
groups to tune reactivities. Triazines also react efficientꢀ
ly and selectively with TCO. These features render triaꢀ
zines suitable for a variety of intracellular applications,
and we showed that a triazine amino acid can be effiꢀ
ciently incorporated into recombinant proteins and laꢀ
beled siteꢀspecifically with TCO. Triazines are also
compatible with other strained alkenes, and will enable
different types of IEDꢀDA reactions to be performed in
tandem in cellular environments.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Experimental details, full spectroscopic data for new comꢀ
pounds, and computational details. This material is availaꢀ
AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
This work was supported by UCI, the National Institutes of
Health (R01GM109078 to K.N.H.), the National Science
Foundation (CHEꢀ1361104 to K.N.H. and CHEꢀ1112409 to
R.A.M.), OHSUꢀMRF and Services Core of the Environꢀ
mental Health Sciences Center via grant P30 ES00210 (to
R.A.M.). Calculations were performed on the Extreme Sciꢀ
ence and Engineering Discovery Environment (XSEDE),
which is supported by the NSF (OCIꢀ1053575). We thank
members of the Dong, Jarvo, and Overman labs for providꢀ
ing reagents and equipment, along with members of the
Prescher lab for helpful discussions and manuscript edits.
REFERENCES
(37) Debets, M. F.; van Hest, J. C. M.; Rutjes, F. P. J. T. Org.
Biomol. Chem. 2013, 11, 6439.
(38) Selvaraj, R.; Fox, J. M. Tetrahedron Lett. 2014, 55, 4795.
(39) Wu, H.; Yang, J.; Šečkutė, J.; Devaraj, N. K. Angew. Chem.
Int. Ed. 2014, 53, 5805.
(1) Grammel, M.; Hang, H. C. Nat. Chem. Biol. 2013, 9, 475.
(2) Patterson, D. M.; Nazarova, L. A.; Prescher, J. A. ACS Chem.
Biol. 2014, 9, 592.
ACS Paragon Plus Environment