X. Wang, J. V. G. Young, C. J. Cramer, L. Que, Jr. and W. B. Tolman,
J. Am. Chem. Soc., 1996, 119, 11555.
Owing to a ligand scrambling reaction, thereafter the starting
copper flavonolate complex 1 and the bis(O-benzoylsali-
cylato)copper() complex 2 is formed.
Assuming steady state conditions for species 3, the rate
eqn. (6) can be deduced which after some simplification
3 T. Funabiki, Catalysis by Metal Complexes, Oxygenases and Model
Systems, Kluwer Academic Press, Dordrecht, 1997, vol. 19;
M. Sono, M. P. Roach, E. D. Coulter and J. H. Dawson, Chem. Rev.,
1996, 96, 2841; G. Speier, New J. Chem., 1994, 18, 143; G. Speier,
Z. Tyeklár, L. Szabó II, P. Tóth, C. G. Pierpont and D. N.
Hendrickson, in The Activation of Dioxygen and Homogeneous
Catalytic Oxidation, eds. D. H. R. Barton, A. E. Martell and D. T.
Sawyer, Plenum Press, New York, 1993, pp. 423–436; L. Que, Jr.
and R. Y. N. Ho, Chem. Rev., 1996, 96, 2607; C. G. Pierpont and
C. W. Lange, Prog. Inorg. Chem., 1994, 41, 331.
d[Cu]
dt
k1k2[Cu][O2]
k1k2[Cu][O2]
k1 ϩ kϪ1
(6)
Ϫ
=
=
= kobs[Cu][O2]
k1 ϩ kϪ1 ϩ k2[O2]
(k2[O2] Ӷ k1 ϩ kϪ1 and [Cu] means the total complex) is in good
agreement with an overall second order dependence according
the experimental data obtained in the kinetic measurements.
The Hammett relationship shows that higher electron density
at the copper ion enhances the rate of the reaction, which
is consistent with an electrophilic attack of dioxygen at the
copper() center, however the reaction constant of the oxygen-
ation reaction is somewhat less (ρ = Ϫ0.63, R = 0.977) than
that found for oxygenation of copper() chloride in pyridine
(ρ = Ϫ1.24).40 This may be due to the buffering effect of the
other flavonolato ligand still co-ordinated to the copper
ion which reduces the redox potential on the copper, reducing
also the sensitivity of the reaction rate to electronic effects.
The reaction rate in acetonitrile was found to be rather slow.
In order to isolate or at least detect any intermediates during
the oxygenation reaction of complex 1 we conducted oxygena-
tions at room temperature for a few days. In that case the
presence of peroxidic products could be demonstrated either
by titration by iodide or oxidising triphenylphosphine to tri-
phenylphosphine oxide by the oxygenated product. In the IR
spectrum bands at 1820 and at 860 cmϪ1 were found which were
4 D. W. Westlake, G. Talbot, E. R. Blakely and F. J. Simpson, Can J.
Microbiol., 1959, 5, 62; S. Hattori and I. Noguchi, Nature (London),
1959, 184, 1145; H. Sakamoto, Seikagu (J. Jpn. Biochem. Soc.),
1963, 35, 633; T. Oka, F. J. Simpson and H. G. Krishnamurty, Can.
J. Microbiol., 1977, 16, 493.
5 E. Makasheva and N. T. Golovkina, Zh. Obsch. Khim., 1973, 43,
1640; M. Thomson and C. R. Williams, Anal. Chim. Acta, 1976,
85, 375; K. Takamura and M. Ito, Chem. Pharm. Bull., 1977, 25,
3218.
6 A. Nishinaga, T. Tojo, H. Tomita and T. Matsuura, J. Chem. Soc.,
Perkin Trans. 1, 1979, 2511.
7 V. Rajananda and S. B. Brown, Tetrahedron Lett., 1981, 22, 4331.
8 T. Matsuura, H. Matsushima and R. Nakashima, Tetrahedron,
1970, 26, 435.
9 M. M. A. El-Sukkary and G. Speier, J. Chem. Soc., Chem.
Commun., 1981, 745.
10 (a) A. Nishinaga, T. Tojo and T. Matsuura, J. Chem. Soc., Chem.
Commun., 1974, 896; (b) A. Nishinaga, T. Kuwashige, T. Tsutsui,
T. Mashino and K. Maruyama, J. Chem. Soc., Dalton Trans., 1994,
805.
11 M. Utaka, M. Hojo, Y. Fujii and A. Takeda, Chem. Lett., 1984, 635;
M. Utaka and A. Takeda, J. Chem. Soc., Chem. Commun., 1985,
1824; É. Balogh-Hergovich and G. Speier, J. Mol. Catal., 1992,
71, 1.
12 G. Speier, V. Fülöp and L. Párkányi, J. Chem. Soc., Chem.
Commun., 1990, 512.
assigned to the ν(CO) absorption of the 3C᎐O in 6 and the
᎐
ν(OO) of the endoperoxide. Unfortunately the endoperoxide
was not stable enough to make the determinations quantitative
and to make a firm characterisation of it. However the data
presented here unequivocally show its presence during the
oxygenation. It seems likely that endoperoxides of the type 6
can extrude CO easily and the stable carbonyl compounds
formed are good driving forces for their decomposition.
13 É. Balogh-Hergovich, G. Speier and G. Argay, J. Chem. Soc., Chem.
Commun., 1991, 551.
14 I. Lippai, G. Speier, G. Huttner and L. Zsolnai, Chem. Commun.,
1997, 741; I. Lippai and G. Speier, J. Mol. Catal., 1998, 130, 139;
I. Lippai, G. Speier, G. Huttner and L. Zsolnai, Acta Crystallogr.,
Sect. C, 1997, 53, 1547; É. Balogh-Hergovich, J. Kaizer and
G. Speier, Inorg. Chim. Acta, 1997, 256, 9.
As a conclusion it can be said that in the enzyme-like oxygen-
ation of the co-ordinated flavonolato ligand of copper() the
formation of an endoperoxide in the bimolecular reaction
can be assumed and the unique decomposition of this endo-
peroxide accompanied by loss of carbon monoxide results in
the copper() O-benzoylsalicylate complex as a good mimic of
the enzyme action. Work is still in progress on model studies to
disclose more details of this cleavage reaction.
15 D. F. Shriver and M. A. Drezdzon, The Manipulation of Air-sensitive
Compounds, Wiley, New York, 1986.
16 R. W. Adams, E. Bishop, R. L. Martin and G. Winter, Aust.
J. Chem., 1966, 19, 207.
17 M. A. Smith, R. M. Newman and R. A. Webb, J. Heterocycl. Chem.,
1968, 5, 425.
18 A. Einhorn, L. Rothlauf and R. Seuffert, Chem. Ber., 1911, 44,
3309.
19 D. D. Perrin, W. L. Armarego and D. R. Perrin, Purification of
Laboratory Chemicals, Pergamon, New York, 2nd edn., 1990.
20 R. L. Carlin, Magnetochemistry, Springer, Berlin, 1986, p. 311.
21 A. B. P. Lever, E. R. Milaeva and G. Speier, in Phthalocyanines
Properties and Applications, eds. C. C. Leznoff and A. B. P. Lever,
VCH, New York, 1993, vol. 3, p. 8.
22 G. M. Sheldrick, SHELXS 86, Program for Crystal Structure
Determinations, University of Göttingen, 1990.
23 G. M. Sheldrick, SHELXL 93, Program for Crystal Structure
Determinations, University of Göttingen, 1993.
Acknowledgements
Financial support of the Hungarian National Research Fund
(OTKA T-7443, T-016285 and T-30400) is gratefully
acknowledged.
24 G. M. Sheldrick, SHELXS 97, Program for Crystal Structure
Determinations, University of Göttingen, 1997.
25 G. M. Sheldrick, SHELXL 97, Program for Crystal Structure
Determinations, University of Göttingen, 1997.
26 A. Kruis, in Landolt-Börnstein, Springer, Berlin, 1976, bd. 4, teil 4,
p. 269.
27 G. Ram and A. R. Sharaf, J. Indian Chem. Soc., 1968, 45, 13.
28 G. Speier, in Bioinorganic Chemistry of Copper, eds. K. D. Karlin
and Z. Tyeklár, Chapman & Hall, New York, 1993, pp. 382–394.
29 R. C. Mehrotra and R. Bohra, Metal Carboxylates, Academic Press,
London, 1983.
30 T. Grezier and E. Weiss, Chem. Ber., 1976, 109, 3142.
31 R. D. Willett and G. L. Breneman, Inorg. Chem., 1983, 22, 326.
32 M. C. Etter, Z. Urbanczyk-Lipkowska, S. Baer and P. F. Barbara,
J. Mol. Struct., 1986, 144, 155.
33 G. Speier, K. Selmeczi, Z. Pintér, G. Huttner and L. Zsolnai,
Z. Kristallogr., 1998, 213, 263.
References
1 B. G. Fox and J. D. Lipscomb, in Biological Oxidation Systems, ed.
C. Reddy and G. A. Hamilton, Academic Press, New York, 1990,
vol. 1, pp. 367–388; K. D. Karlin and Z. Tyeklár, Bioinorganic
Chemistry of Copper, Chapman & Hall, New York, 1992; E. I.
Solomon, M. J. Baldwin and M. D. Lowery, Chem. Rev., 1992,
92, 521; K. D. Karlin, Science, 1993, 261, 701; W. G. Levine, in
The Biochemistry of Copper, eds. J. Peisach, P. Aisen and W. E.
Blumberg, Academic Press, New York, 1966, pp. 371–387; J. A.
Halfen, S. Mahapatra, E. C. Wilkinson, S. Kaderli, V. G. Young,
L. Que, Jr., A. D. Zuberbühler and W. B. Tolman, Science, 1996,
271, 1397.
2 K. D. Karlin, S. Kaderli and A. D. Zuberbühler, Acc. Chem. Res.,
1997, 30, 139; K. D. Karlin, Z. Tyeklár and A. D. Zuberbühler, in
Bioinorganic Catalysis, ed. J. Reedijk, Marcel Dekker, New York,
1993, pp. 261–315; V. Mahadevan, Z. Hou, A. P. Cole, D. E. Root,
T. K. Lal, E. I. Solomon and T. D. P. Stack, J. Am. Chem. Soc., 1997,
119, 11996; S. Mahapatra, J. A. Halfen, E. C. Wilkinson, G. Pan,
34 L. Párkányi and G. Speier, Z. Kristallogr., 1995, 210, 307.
35 G. Speier and V. Fülöp, J. Chem. Soc., Dalton Trans., 1989, 2331.
J. Chem. Soc., Dalton Trans., 1999, 3847–3854
3853