Organic Letters
Letter
siloxyallylmetallic species and their synthetic application. J. Am. Chem.
Soc. 1985, 107, 5495−5501. (d) Ryu, I.; Ikebe, M.; Sonoda, N.;
Yamato, S.-Y.; Yamamura, G.-H.; Komatsu, M. Chemistry of ketone
α,β-dianions. Acylation reactions of dianion cuprates by acid
chlorides. Tetrahedron Lett. 2002, 43, 1257−1259. (e) Murphy, J.
A.; Commeureuc, A. G. J.; Snaddon, T. N.; McGuire, T. M.; Khan, T.
A.; Hisler, K.; Dewis, M. L.; Carling, R. Direct Conversion of N-
Methoxy-N-methylamides (Weinreb Amides) to Ketones via a
Nonclassical Wittig Reaction. Org. Lett. 2005, 7, 1427−1429.
(f) Wang, X.-j.; Zhang, L.; Sun, X.; Xu, Y.; Krishnamurthy, D.;
Senanayake, C. H. Addition of Grignard Reagents to Aryl Acid
Chlorides: An Efficient Synthesis of Aryl Ketones. Org. Lett. 2005, 7,
5593−5595. (g) Tsubouchi, A.; Onishi, K.; Takeda, T. Stereoselective
Preparation of 1-Siloxy-1-alkenylcopper Species by 1,2-Csp2-to-O
Silyl Migration of Acylsilanes. J. Am. Chem. Soc. 2006, 128, 14268−
14269. (h) Maloney, K. M.; Chung, J. Y. L. A General Procedure for
the Preparation of β-Ketophosphonates. J. Org. Chem. 2009, 74,
products can be used as building blocks for other synthetic
transformations, e.g., the generation of β-sulfonyl ketones.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures, analytical data (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
̌
7574−7576. (i) Stefane, B. Selective Addition of Organolithium
Present Address
‡(P.H.G.) Department of Organic Chemistry, Weizmann
Institute of Science, 234 Herzl St, Rehovot, Israel.
Author Contributions
†V.H. and M.B. contributed equally.
Notes
Reagents to BF2-Chelates of β-Ketoesters. Org. Lett. 2010, 12, 2900−
2903. (j) Genna, D. T.; Posner, G. H. Cyanocuprates Convert
Carboxylic Acids Directly into Ketones. Org. Lett. 2011, 13, 5358−
5361. (k) Liu, C.; Achtenhagen, M.; Szostak, M. Chemoselective
Ketone Synthesis by the Addition of Organometallics to N-
Acylazetidines. Org. Lett. 2016, 18, 2375−2378. (l) Meng, G.;
Szostak, M. N-Acyl-Glutarimides: Privileged Scaffolds in Amide N−C
Bond Cross-Coupling. Eur. J. Org. Chem. 2018, 2018, 2352−2365.
(m) Shi, S.; Nolan, S. P.; Szostak, M. Well-Defined Palladium(II)−
NHC Precatalysts for Cross-Coupling Reactions of Amides and Esters
by Selective N−C/O−C Cleavage. Acc. Chem. Res. 2018, 51, 2589−
2599.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We are grateful to the Fonds der Chemischen Industrie (Liebig
Fellowship, I.F.; PhD fellowship, V.H., the University of
■
(5) (a) Tokuyama, H.; Yokoshima, S.; Yamashita, T.; Fukuyama, T.
A novel ketone synthesis by a palladium-catalyzed reaction of thiol
esters and organozinc reagents. Tetrahedron Lett. 1998, 39, 3189−
3192. (b) Liebeskind, L. S.; Srogl, J. Thiol Ester−Boronic Acid
Coupling. A Mechanistically Unprecedented and General Ketone
Synthesis. J. Am. Chem. Soc. 2000, 122, 11260−11261. (c) Wittenberg,
R.; Srogl, J.; Egi, M.; Liebeskind, L. S. Ketone Synthesis under Neutral
Conditions. Cu(I) Diphenylphosphinate-Mediated, Palladium-Cata-
lyzed Coupling of Thiol Esters and Organostannanes. Org. Lett. 2003,
5, 3033−3035. (d) Fausett, B. W.; Liebeskind, L. S. Palladium-
Catalyzed Coupling of Thiol Esters with Aryl and Primary and
Secondary Alkyl Organoindium Reagents. J. Org. Chem. 2005, 70,
4851−4853.
(6) (a) Gehrtz, P. H.; Kathe, P.; Fleischer, I. Nickel-Catalyzed
Coupling of Arylzinc Halides with Thioesters. Chem. - Eur. J. 2018,
24, 8774−8778. (b) Shimizu, T.; Seki, M. A novel synthesis of
functionalized ketones via a nickel-catalyzed coupling reaction of zinc
reagents with thiolesters. Tetrahedron Lett. 2002, 43, 1039−1042.
(c) Wotal, A. C.; Weix, D. J. Synthesis of Functionalized Dialkyl
Ketones from Carboxylic Acid Derivatives and Alkyl Halides. Org.
Lett. 2012, 14, 1476−1479.
(7) Cardellicchio, C.; Fiandanese, V.; Marchese, G.; Ronzini, L. A
highly efficient synthetic route to ketones through sequential coupling
reactions of Grignard reagents with S-phenyl carbonochloridothioate
in the presence of nickel or iron catalysts. Tetrahedron Lett. 1985, 26,
3595−3598.
(8) Anderson, R. J.; Henrick, C. A.; Rosenblum, L. D. General
ketone synthesis. Reaction of organocopper reagents with S-alkyl and
S-aryl thioesters. J. Am. Chem. Soc. 1974, 96, 3654−3655.
(9) Mukaiyama, T.; Araki, M.; Takei, H. Reaction of S-(2-pyridyl)
thioates with Grignard reagents. Convenient method for the
preparation of ketones. J. Am. Chem. Soc. 1973, 95, 4763−4765.
(10) For selected examples, see: (a) Lauder, K.; Toscani, A.; Qi, Y.;
Lim, J.; Charnock, S. J.; Korah, K.; Castagnolo, D. Photo-biocatalytic
One-Pot Cascades for the Enantioselective Synthesis of 1,3-
Mercaptoalkanol Volatile Sulfur Compounds. Angew. Chem., Int. Ed.
2018, 57, 5803−5807. (b) Trost, B. M.; Keeley, D. E. New synthetic
methods. Secoalkylative approach to grandisol. J. Org. Chem. 1975, 40,
2013. (c) Cohen, T.; Mura, A. J.; Shull, D. W.; Fogel, E. R.; Ruffner,
Tu
Tubingen; Deutsche Forschungsgemeinchaft, ZUK63), and
̈
bingen (Institutional Strategy of the University of
̈
the University of Regensburg for financial support.
REFERENCES
■
(1) Kazemi, M.; Shiri, L. Thioesters synthesis: recent adventures in
the esterification of thiols. J. Sulfur Chem. 2015, 36, 613−623.
(2) For selected examples, see: (a) Lussem, B. J.; Gais, H.-J.
̈
Palladium-Catalyzed Enantioselective Allylic Alkylation of Thiocar-
boxylate Ions: Asymmetric Synthesis of Allylic Thioesters and
Memory Effect/Dynamic Kinetic Resolution of Allylic Esters. J. Org.
Chem. 2004, 69, 4041−4052. (b) Sawada, N.; Itoh, T.; Yasuda, N.
Efficient copper-catalyzed coupling of aryl iodides and thiobenzoic
acid. Tetrahedron Lett. 2006, 47, 6595−6597. (c) Cao, H.; McNamee,
L.; Alper, H. Palladium-Catalyzed Thiocarbonylation of Iodoarenes
with Thiols in Phosphonium Salt Ionic Liquids. J. Org. Chem. 2008,
73, 3530−3534. (d) Huang, Y.-T.; Lu, S.-Y.; Yi, C.-L.; Lee, C.-F. Iron-
Catalyzed Synthesis of Thioesters from Thiols and Aldehydes in
Water. J. Org. Chem. 2014, 79, 4561−4568. (e) Hirschbeck, V.;
Gehrtz, P. H.; Fleischer, I. Regioselective Thiocarbonylation of Vinyl
Arenes. J. Am. Chem. Soc. 2016, 138, 16794−16799.
(3) For reviews, see: (a) Hirschbeck, V.; Gehrtz, P. H.; Fleischer, I.
Metal-Catalyzed Synthesis and Use of Thioesters: Recent Develop-
ments. Chem. - Eur. J. 2018, 24, 7092−7107. (b) Pan, F.; Shi, Z.-J.
Recent Advances in Transition-Metal-Catalyzed C−S Activation:
From Thioester to (Hetero)aryl Thioether. ACS Catal. 2014, 4, 280−
288. (c) Wang, L.; He, W.; Yu, Z. Transition-metal mediated carbon−
sulfur bond activation and transformations. Chem. Soc. Rev. 2013, 42,
599−621.
(4) For selected examples, see: (a) Posner, G. H.; Whitten, C. E.;
McFarland, P. E. Organocopper chemistry. Halo-, cyano-, and
carbonyl-substituted ketones from the corresponding acyl chlorides
and organocopper reagents. J. Am. Chem. Soc. 1972, 94, 5106−5108.
(b) Nahm, S.; Weinreb, S. M. N-methoxy-N-methylamides as
effective acylating agents. Tetrahedron Lett. 1981, 22, 3815−3818.
(c) Enda, J.; Kuwajima, I. General method for generation of 3-
D
Org. Lett. XXXX, XXX, XXX−XXX