Page 3 of 5
RSC Advances
DOI: 10.1039/C3RA43144D
next extended the method to the coupling of alkynyl and alkyl
carboxylic acids. To our delight, effective reaction was
alkanes18 via double decarboxylative crossꢀcouplings of
cinnamic acids or phenylpropiolic acid and aliphatic acids
carried out with the otherwise conditions identical to the 35 which have never been reported before. The reaction could
optimized conditions but just by elevating the reaction
temperature to 110℃, both secondary and tertiary aliphatic
acids underwent high efficient decarboxylative processes with
phenylpropiolic acid to afford the corresponding products
proceed in aqueous solution using catalytic amount of metals
and both substrates are cheap and readily available without
prefunctionalization. Further studies on this transformation
are ongoing in our laboratory.
5
4a’a-4a’c, 4a’f and 4a’k in excellent yields (Scheme 2). This 40 We gratefully acknowledge NSFC (No. 21172055).
reaction provides a new and efficient method for C(sp)−C(sp3)
10 bond formation.17
Notes and references
1
(a) O. Baudoin, Angew. Chem. Int. Ed., 2007, 46, 1373; (b) L.
J.Goossen, N. Rodriguez and K. Goossen, Angew. Chem. Int. Ed.,
2008,47, 3100; (c) N. Rodriguez and L. J. Goossen, Chem. Soc. Rev.,
2011, 40, 5030; (d) J. Cornella and I. Larrosa, Synthesis., 2012, 44,
653; (e) W. I. Dzik, P. P. Lange and L. J. Goossen, Chem. Sci., 2012,
3, 2017. (f) S. Seo, M. Slater and M. F. Greaney, Org. Lett., 2012,
14, 2650.
(a) L. J. Goossen, G. Deng and L. M. Levy, Science., 2006, 313, 662;
(b) L. J. Goossen, B. Zimmermann and T. Knauber, Angew. Chem.
Int. Ed., 2008, 47, 7103; (c) L. J. Goossen, F. Rudolphi, C. Oppel
and N. Rodriguez, Angew. Chem. Int. Ed., 2008, 47, 3043; (d) L. J.
Goossen, N. Rodriguez, B. Melzer, C. Linder, G. Deng and L. M.
Levy, J. Am. Chem. Soc., 2007, 129, 4824; (e) L. J. Goossen and T.
Knauber, J. Org. Chem., 2008, 73, 8631; (f) L. J. Goossen, N.
Rodriguez and C. Linder, J. Am. Chem. Soc., 2008, 130, 15248; (g)
L. J. Goossen, N. Rodriguez, P. P. Lange and C. Linder, Angew.
Chem. Int. Ed., 2010, 49, 1111; (h) S. Bhadra, W. I. Dzik and L. J.
Goossen, J. Am. Chem. Soc., 2012, 134, 9938; (i) B. Song, T.
Knauber and L. J. Goossen, Angew. Chem. Int. Ed., 2013, 52, 2954.
(a) J. Cornella, P. Lu and I. Larrosa, Org. Lett., 2009, 11, 5506; (b) C.
Arroniz, A. Ironmonger, G. Rassias and I. Larrosa, Org. Lett., 2013,
15, 910.
Cu (5%)
AgNO3 (20%)
COOH HOOC
+
R
R
K2S2O8 (1.0eq)
。
a'
2a-c, 2f
4
CH CN/H O,
45
50
55
60
65
70
75
80
85
90
110 C
3
2
4a'a
4a'c
, 88%
4a'f
, 84%
, 85%
4a'b
, 91%
OH
2
4a'k
, 95%
Scheme 2 Cu/Agꢀcatalyzed double decarboxylative coupling
between phenylpropiolic acid and aliphatic acids.
15
Based on the results of our investigation (See ESI) and
previous studies12ꢀ14, a plausible mechanism is proposed in
Scheme 3. At first, Ag(I) is oxidized to Ag(II) by persulfate and
the latter induces the aliphatic acid to generate alkyl radical.
Afterwards, alkyl radical attacks αꢀposition of cinnamic acid or
20 phenylpropiolic acid to produce intermediate A1 or B1
respectively. Then, A2 and B2 which are produced by A1 and B1
undergo SET process to release CO2 and form product C by the
assistance of Cu(II) (Scheme 3). Aromatic ring in cinnamic acid
or phenylpropiolic acid is very important because it could
25 stabilize the benzyl radical and help the intermediate to finish the
decarboxylative step fast and the final products are relatively
stable under the oxydic conditions.
3
4
(a) P. Hu, M. Zhang, X. M. Jie and W. Su, Angew. Chem. Int. Ed.,
2012, 51, 227; (b) P. Hu, J. Kan, W. Su and M. Hong, Org. Lett.,
2009, 11, 2341; (c) Z. Fu, S. Huang, W. Su and M. Hong, Org. Lett.,
2010, 12, 4992.
5
6
(a) J. M. Becht and C. L. Drian, Org. Lett., 2008, 10, 3161; (b) J. M.
Becht, C. Catala, C. L. Drian and A. Wagner, Org. Lett., 2007, 9,
1781; (c) J. M. Becht and C. L. Drian, J. Org. Chem., 2011, 76, 6327.
(a) K. Xie, Z. Yang, X. Zhou, X. Li, S. Wang, Z. Tan, X. An and C.
C. Guo, Org. Lett., 2010, 12, 1564; (b)P. Forgione, M. C. Brochu, M.
StꢀOnge, K. H. Thesen, M. D. Bailey and F. Bilodeau, J. Am. Chem.
Soc., 2006, 128, 11350; (c) M. Miyasaka, A. Fukushima, T. Satoh, K.
Hirano and M. Miura, Chem. Eur. J., 2009, 15, 3674; (d) R. Shang,
Y. Fu, Y. Wang, Q. Xu, H. Z. Yu and L. Liu, Angew. Chem. Int. Ed.,
2009, 48, 9350; (e) M. Yamashita, K. Hirano, T. Satoh and M. Miura,
Org. Lett., 2009, 12, 592; (f) H. Kim and P. H. Lee, Adv. Synth.
Catal., 2009, 351, 2827; (h) C. Wang, I. Piel and F. Glorius, J. Am.
Chem. Soc., 2009, 131, 4194; (i) F. Zhang and M. F. Greaney, Angew.
Chem. Int. Ed., 2010, 49, 2768; (j) P. Fang, M. Li and H. Ge, J. Am.
Chem. Soc., 2010, 132, 11898.
(a) A. G. Myers, D. Tanaka and M. R. Mannion, J. Am. Chem. Soc.,
2002, 124, 11250; (b) D. Tanaka and A. G. Myers, Org. Lett., 2004, 6,
433; (c) D. Tanaka, S. P. Romeril and A. G. Myers, J. Am. Chem.
Soc., 2005, 127, 10323; (d) N. Gigant, L. ChaussetꢀBoissarie and I.
Gillaizeau, Org. Lett., 2013, 15, 816.
(a) J. Moon, M. Jeong, H. Nam, J. Ju, H. J. Moon, H. M. Jung and S.
Lee, Org. Lett., 2008, 10, 945; (b) J. Moon, M. Jang and S. Lee, J.
Org. Chem., 2009, 74, 1403.
7
8
9
(a) L. Yu, P. Li and L. Wang, Chem. Commun., 2013, 49, 2368; (b) Z.
Yang, X. Chen, J. Liu, Q. Gui, K. Xie, M. Li and Z. Tan, Chem.
Commun., 2013, 49, 1560; (c) M. Li and H. Ge, Org. Lett., 2010, 12,
3464.
95 10 R. Shang, Y. Fu, J. B. Li, S. L. Zhang, Q. X. Guo and L. Liu, J. Am.
Chem. Soc., 2009, 131, 5738.
30
Scheme 3 Proposed preliminary mechanism.
11 J. S. Dickstein, C. A. Mulrooney, E. M. O’Brien, B. J. Morgan and
M. C. Kozlowski, Org. Lett., 2007, 9, 2441.
In summary, we have developed a Cu/Ag bimetallic tandem
catalysis for selective alkenylation or alkynylation of
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3