yield. Subsequent Stille-Kelly reaction8 of ether 1 using
hexamethylditin in the presence of catalytic PdCl2‚(Ph3P)2
in refluxing xylene furnished benzo[4,5]furo[2,3-b]pyridine
(2)9 in 90% yield.
The Stille coupling of 4-chloro-3-tributylstannylpyridine
and o-iodophenol under the same conditions for the trans-
formation 3 f 4 led to two products in 70% combined yield.
The major product was the desired adduct 6, along with the
cyclized product, benzo[4,5]furo[3,2-c]pyridine (7) as a
minor product (Scheme 3, route a). The discrepancy of
The synthesis of benzo[4,5]furo[2,3-c]pyridine (5) began
with preparation of stannane 3 (Scheme 2). Applying
Scheme 3. Synthesis of Benzo[4,5]furo[3,2-c]pyridine (7)
Scheme 2. Synthesis of Benzo[4,5]furo[2,3-c]pyridine (5)
Gribble’s ortho-lithiation tactic,10 3-chloropyridine was
deprotonated at the most acidic position, C(4). Subsequent
exposure of the resulting 3-chloro-4-lithiopyridine to tri-
butyltin chloride gave 3-chloro-4-tributylstannylpyridine (3).
The Stille coupling of stannane 3 with o-iodophenol in the
presence of catalytic PdCl2‚(Ph3P)2 and CuI in refluxing DMF
then produced heterobiaryl 4 in 63% yield. Only small
amounts of 4 were observed when the reaction was carried
out using THF, dioxane, or toluene as the solvent. Finally,
the intramolecular SNAr etherification was accomplished by
treatment of biaryl 4 with NaOt-Bu in refluxing DMSO to
afford benzo[4,5]furo[2,3-c]pyridine (5)11 in 57% yield.
reactivities between heterobiaryls 4 and 6 relies upon the
fact that the 4-chloro substituent on 6 is more activated as a
result of γ-activation than the 3-chloro substituent on 4.
Subjecting the reaction mixture to NaOt-Bu in refluxing
DMSO furnished benzo[4,5]furo[3,2-c]pyridine (7)12 in only
34% yield. As a consequence, an alternative route to 7 was
pursued.
4-Chloro-3-iodopyridine was prepared in 65-80% yield
by ortho-lithiation of 4-chloropyridine followed by treatment
with iodine (Scheme 3, route b).13 Taking advantage of the
γ-activation, also a consequence of the inductive effect of
the N-atom on the pyridine ring, regioselective SNAr
displacement of the 4-chloro substituent was accomplished
by refluxing 4-chloro-3- iodopyridine with sodium o-
iodophenoxide in DMF to construct heterobiaryl ether 8 in
(2) Wakelin, L. P. G.; Waring, M. J. In ComprehensiVe Medicinal
Chemistry; Sammes, P. G., Ed.; Pergamon: Oxford, 1990, pp 703-724.
(3) Ames, D. E.; Opalko, A. Tetrahedron 1984, 40, 1919-1925.
(4) Abramovitch, R. A.; Inbasekaran, M. N.; Kato, S.; Radzikowska, T.
A.; Tomask, P. J. Org. Chem. 1983, 48, 690-695.
(5) Lai, L.-L.; Lin, P.-Y.; Huang, W.-H.; Shiao, M.-J.; Hwu, J. R.
Tetrahedron Lett. 1994, 35, 3545-3546.
(6) Farina, V.; Krishnamurthy, V.; Scott, W. J. The Stille Reaction;
Wiley: New York, 1998.
(7) Guillier, F.; Nivoliers, F.; Godard, A.; Marsais, F.; Queguiner, G.
Tetrahedron Lett. 1994, 35, 6489-6492.
(8) (a) Kelly, T. R.; Li, Q.; Bhushan, V. Tetrahedron Lett. 1990, 31,
161-164. (b) Grigg, R.; Teasdale, A.; Sridharan, V. Tetrahedron Lett. 1991,
32, 3859-3862. (c) Sakamoto, T.; Yasuhara, A.; Kondo, Y.; Yamanaka,
H. Heterocycles 1991, 36, 2597-2600. (d) Fukuyama, Y.; Yaso, H.;
Nakamura, K.; Kodama, M. Tetrahedron Lett. 1999, 40, 105-108. (e)
Seiders, T. J.; Baldridge, K. K.; Elliott, E. L.; Grube, G. H.; Siegel, J. S. J.
Am. Chem. Soc. 1999, 121, 7439-7440. (f) Iyoda, M.; Miura, M. I.; Sasaki,
S.; Kabir, S. M. H.; Kuwatani, Y.; Yoshida, M. Tetrahedron Lett. 1997,
38, 4581-4582. (g) Iwaki, T.; Yasuhara, A.; Sakamoto, T. J. Chem. Soc.,
Perkin Trans. 1 1999, 1505-1510.
(11) Data for 5: mp ) 93-95 °C; Rf ) 0.28 (1:1 hex/EtOAc); IR (KBr,
cm-1) 3042, 1626, 1577, 1450, 1421, 1182, 1016, 823, 750, 728; 1H NMR
(CDCl3) δ 8.97 (s, 1H), 8.57 (d, J ) 6.0 Hz, 1H), 8.00 (d, J ) 7.7 Hz, 1H),
7.84 (d, J ) 7.0 Hz, 1H), 7.60 (m, 2H), 7.60 (t, J ) 7.0 Hz, 1H); 13C NMR
(CDCl3) 156.8, 152.9, 143.0, 134.4, 130.9, 129.8, 123.4, 122.3, 122.0, 115.0,
122.4; MS (ACPI) m/z 169.9 (M+ + 1). Anal. Calcd for C11H7NO: C,
78.09; H, 4.17; N, 8.28. Found: C, 77.92; H, 4.26; N, 8.16.
(9) Data for 2: mp ) 68-69 °C; Rf ) 0.47 (1:1 hex/EtOAc); 1H NMR
(CDCl3) δ 8.43 (dd, J ) 1.8, 5.1 Hz, 1H), 8.24 (dd, J ) 1.7, 7.6 Hz, 1H),
7.93 (m, 1H), 7.61 (m, 1H), 7.30 (m, 2H); 13C NMR (CDCl3) δ 163.4,
154.7, 146.6, 129.8, 128.5, 123.6, 122.6, 121.5, 119.3, 117.1, 112.4; MS
(ACPI) m/z 170.1 (M+ + 1). Anal. Calcd for C11H7NO: C, 78.09; H, 4.17;
N, 8.28. Found: C, 77.96; H, 4.22; N, 8.19.
(10) (a) Gribble, G. W.; Saulnier, M. G. Tetrahedron Lett. 1980, 21,
4137-4140. (b) Gribble, G. W.; Saulnier, M. G. Heterocycles 1993, 35,
151-169. (c) Mallet, M.; Que´guiner, G. Tetrahedron 1982, 38, 3035-
3042. (d) Mallet, M.; Que´guiner, G. Tetrahedron 1986, 42, 2253-2262.
(12) Data for 7: mp ) 72-74 °C.; Rf ) 0.20 (1:1 hex/EtOAc); 1H
NMR (CDCl3) δ 9.02 (s, 1Η), 8.43 (d, J ) 5.6 Hz, 1H), 7.78 (d, J ) 7.8
Hz, 1H), 7.38 (d, J ) 8.0 Hz, 1H), 7.29 (m, 2H), 7.18 (t, J ) 7.6 Hz, 1H);
13C NMR (CDCl3) δ 161.2, 156.1, 147.7, 143.8, 128.5, 124.1, 121.8, 121.3,
107.1; MS (ACPI) m/z 170.0 (M+ + 1). Anal. Calcd for C11H7NO: C,
78.09; H, 4.17; N, 8.28. Found: C, 78.02; H, 4.13; N, 8.17.
(13) Cho, S. Y.; Kim, S. S.; Park, K.-H.; Kang, S. K.; Choi, J.-K.; Hwang,
K.-J.; Yum, E. K. Heterocycles 1996, 43, 1641-1652.
2202
Org. Lett., Vol. 4, No. 13, 2002