Inorg. Chem. 1999, 38, 4171-4173
4171
Table 1. Selected Crystallographic Data for 1‚Me2CO and 2
Anionic Iridium Monohydrides
1‚Me2CO
2
Robert D. Simpson, William J. Marshall,
Amy A. Farischon, D. Christopher Roe, and
Vladimir V. Grushin*
empirical formula
fw
crystal size, mm
crystal system
space group
temp, K
a, Å
C37H85I3IrNOP2
1194.94
C54H73Cl3IrNP4
1158.64
0.17 × 0.18 × 0.21 0.22 × 0.35 × 0.37
triclinic
P1h
triclinic
P1h
173
Central Research and Development,
E. I. DuPont de Nemours & Co., Inc.,† Experimental Station,
Wilmington, Delaware 19880-0328
173
12.946(1)
16.178(1)
12.396(1)
106.26(1)
92.12(1)
96.58(1)
2469.5
2
1.607
46.37
Rigaku RU 300
3.2-50.0
ω
no
26 136
14.164(1)
19.729(1)
9.614(1)
96.93(1)
91.06(1)
89.26(1)
2666.3
2
1.443
27.98
Rigaku RU 300
3.5-48.2
ω
b, Å
c, Å
ReceiVed January 11, 1999
R, deg
â, deg
γ, deg
Introduction
volume, Å3
Z
Of all the transition metals, iridium forms the largest number
of hydrido complexes.1,2 Hundreds of various neutral and
cationic iridium hydrides have been isolated and reliably
characterized. At the same time, very little is known about
anionic hydrido complexes of iridium.3 Although a few mono-
nuclear polyhydridoiridates,4,5 anionic cluster hydrides,6 and two
π-acid-stabilized [HIrL5]3- (L ) CN or SnCl3) trianions7 have
been reported, simplest members of the family, i.e., mononuclear
monohydridoiridate monoanions remain unknown. In this note,
we report the synthesis of such complexes, the first remarkably
electron-rich, yet air-stable mononuclear anionic iridium hy-
drides, their X-ray structures, and solution behavior.
calcd density, g cm-1
µ(Mo), cm-1
diffractometer
2θ range, deg
scan type
abs corr
no
27 814
6098
no. of reflns collcd
no. of unique reflns used in 5603
refinement (I > 3σ(I))
no. of params refined
data-to-param ratio
R1, %a
410
13.54
3.5
571
10.63
3.2
Rw, %a
3.9
3.8
goodness of fit
2.05
2.23
Results and Discussion
a R ) ∑(||Fo| - |Fc||)/∑|Fo|; Rw ) [∑w(|Fo| - |Fc|)2/∑w|Fo| ]1/2
.
2
While the green complex [(i-Pr3P)2Ir(H)I2] is virtually
insoluble in pure acetone, it readily dissolves in acetone
containing either NaI or Bu4NI, to produce stable orange-
tan solutions. When Bu4NI was the iodide source, brown-red
crystals of [Bu4N][(i-Pr3P)2Ir(H)I3]‚Me2CO (1‚Me2CO) were
isolated in 76% yield (eq 1). Similarly, bright yellow crystals
† Contribution No. 7887.
(1) Geoffroy, G. L.; Lehman, J. R. AdV. Inorg. Chem. Radiochem. 1977,
20, 189.
(2) For recent general reviews of classical and nonclassical transition metal
hydrides, see: (a) Transition Metal Hydrides; Dedieu, A., Ed.; VCH:
New York, 1992. (b) Jessop, P. G.; Morris, R. H. Coord. Chem. ReV.
1992, 121, 155. (c) Heinekey, D. M.; Oldham, W. J. Chem. ReV. 1993,
93, 913.
(3) Darensbourg, M. Y.; Ash, C. E. AdV. Organomet. Chem. 1987, 27, 1.
(4) Bronger, W.; Gehlen, M.; Aufferman, G. J. Alloys Compd. 1991, 176,
255. Kadir, K.; Noreus, D. J. Alloys Compd. 1994, 209, 213. Abdur-
Rashid, K.; Gusev, D. G.; Landau, S. E.; Lough, A. J.; Morris, R. H.
J. Am. Chem. Soc. 1998, 120, 11826.
(5) (a) Deprotonation of [Cp*IrH4], [Cp*Ir(PMe3)H2], and [Cp*Ir(SiMe3)-
H3] with strong bases produces highly reactive species which have
been used as synthons of anionic hydrides. See: Gilbert, T. M.;
Bergman, R. G. J. Am. Chem. Soc. 1985, 107, 3502, 6391. Gilbert, T.
M.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1985, 107,
3508. McGhee, W. D.; Bergman, R. G. J. Am. Chem. Soc. 1985, 107,
3388. (b) Very recently, it was demonstrated that deprotonation of
[Cp*Ir(PMe3)H2] with t-BuLi resulted in the formation of [Cp*Ir-
(PMe3)(H)(Li)], from which no lithium decoordination occurred in
THF, DME, or benzene, even in the presence of 12-crown-4. See:
Peterson, T. H.; Golden, J. T.; Bergman, R. G. Organometallics 1999,
18, 2005.
(6) Ciani, G.; Manassero, M.; Albano, V. G.; Canziani, F.; Giordano, G.;
Martinengo, S.; Chini, P. J. Organomet. Chem. 1978, 150, C17. Bau,
R.; Chiang, M. Y.; Wei, C.-Y.; Garlaschelli, L.; Martinengo, S.;
Koetzle, T. F. Inorg. Chem. 1984, 23, 4758. Ceriotti, A.; Pergola, R.
D.; Garlaschelli, L.; Laschi, F.; Manassero, M.; Masciocchi, N.;
Sansoni, M.; Zanello, P. Inorg. Chem. 1991, 30, 3349. Beringhelli,
T.; Ciani, G.; D’Alfonso, G.; Garlaschelli, L.; Moret, M.; Sironi, A.
J. Chem. Soc., Dalton Trans. 1992, 1865. Pergola, R. D.; Cea, F.;
Garlaschelli, L.; Masciocchi, N.; Sansoni, M. J. Chem. Soc., Dalton
Trans. 1994, 1501.
of [PPN][(i-Pr3P)2Ir(H)Cl3], 2, were isolated in 85% yield upon
dissolving deep-purple [(i-Pr3P)2Ir(H)Cl2] in an acetone solution
of PPN Cl. Given the unique set of electron-rich ligands on the
metal, both 1 and 2 are remarkably air-stable in the solid state,
showing no sign of decomposition for months. When exposed
to air, solutions of 1 or 2 decompose over the course of hours
at room temperature.
Single-crystal X-ray diffraction of 1 and 2 (Table 1) showed
mer-trans octahedral structures for both anions (Figures 1 and
2). No bonding contacts were observed between 1 and the
cocrystallized acetone molecule. The Ir-H bond distances of
1.56(4) Å for 1 and 1.46(4) Å for 2 are close to the average
value of 1.6 Å obtained from X-ray and ND studies of neutral
hydrido iridium complexes.8 In comparison with the Ir-X bonds
that are mutually trans, the Ir-X bond trans to the hydride is
remarkably elongated (by 0.14 and 0.19 Å for X ) I and Cl,
respectively) due to the strong trans-influence of the H. This
(7) Krogmann, K.; Binder, W. Angew. Chem., Int. Ed. Engl. 1967, 6, 881.
Whitesides, G. M.; Maglio, G. J. Am. Chem. Soc. 1969, 91, 4980.
Mockford, M. J.; Griffith, W. P. J. Chem. Soc., Dalton Trans. 1985,
717. Yamakawa, T.; Shinoda, S.; Saito, Y.; Moriyama, H.; Pregosin,
P. S. Magn. Reson. Chem. 1985, 23, 202.
(8) Bau, R.; Teller, R. G.; Kirtley, S. W.; Koetzle, T. F. Acc. Chem. Res.
1979, 12, 176. Teller, R. G.; Bau, R. Struct. Bonding (Berlin) 1981,
44, 1. Koetzle, T. F. Trans. Am. Crystallogr. Assoc. 1995, 31, 57.
Bau, R.; Drabnis, M. H. Inorg. Chim. Acta 1997, 259, 27.
10.1021/ic990068j CCC: $18.00 © 1999 American Chemical Society
Published on Web 08/17/1999