C. Nuñez et al. / Inorganic Chemistry Communications 14 (2011) 831–835
835
(30 mL). The resulting solution was gently refluxed with magnetic stirring for ca.
4 h. The colour changed from yellow to orange. The solution was then allowed to
cool and an orange solid appeared. The solid was filtered off, washed with diethyl
ether and methanol and dried under vacuum. This compound was characterized
as L2.L1. Anal. Calcd for C27H22N2O4: C, 73.96; H, 5.06; N, 6.39. Found: C, 73.78; H,
5.24; N, 6.33%. Yield: 63%. IR (KBr, cm-1): 1623 [ν(C=N)imine]; 1583 [ν(C=C)].
References
[1] (a) C. Lodeiro, J.L. Capelo, J.C. Mejuto, E. Oliveira, H.M. Santos, B. Pedras, C. Nuñez,
Chem. Soc. Rev. 39 (2010) 2948;
(b) Z.C. Xu, J. Yoon, D.R. Spring, Chem. Soc. Rev. 39 (2010) 1996;
(c) C. Bazzicalupi, A. Bencini, S. Biagini, A. Bianchi, E. Faggi, C. Giorgi, M.
Marchetta, F. Totti, B. Valtancoli, Chem. Eur. J. 15 (2009) 8049.
[2] (a) A. Prassana de Silva, H.Q.N. Gunartne, T. Gunnlaugsson, A.J.M. Huxley, C.P.
McCoy, J.T. Rademacher, T.E. Rice, Chem. Rev. 97 (1997) 1515;
(b) K. Rurack, Spectrochim. Acta A 57 (2001) 2161.
[3] J.D. Watson, F.C.H. Crick, Nature 171 (1953) 737.
[4] I.E. Rowan, R.J.M. Nolte, Angew. Chem. 110 (1998) 65;
Angew. Chem. Int. Ed. 37 (1998) 62.
MS (ESI+, m/z): 439 [L1 +H]+ 1H NMR (DMSO) (L1): δ=13.25 (s, 4 H, OH);
.
9.18 (s, 1 H, N=CH); 8.89 (s, 1H, N=CH); 7.07–6.75 (m, 14 C-H, Ar); 4.01 (s,
2 H, CH2) ppm. L2. Anal. Calcd for C33H26N4O3: C, 75.27; H, 4.97; N, 10.63.
Found: C, 75.95; H, 4.92; N, 10.64%. Yield: 53%. IR (KBr, cm-1): 1627 [ν(C=N)imine];
1560 [ν(C=C)]. MS (ESI+, m/z): 531 [Na+L2]+. 1H NMR (DMSO) (L2): δ=9.97 (s,
2 H, N=CH); 8,78 (s, 2 H, OH); 8.41–7.14 (m, 18 C-H, Ar); 4.04 (s, 2 H, CH2) ppm.
[28] General procedure for the synthesis of the metal complexes with ligands L1 and L2
Ligands L1 or L2 (3 equiv), NaHCO3 (2 equiv), and the corresponding salt (Al+3, Ga+3
and In+3) were dissolved in ethanol under argon. The resulting mixture was gently
heated and magnetically stirred for 4 h. The solution was then concentrated in a
rotary evaporator to ca. 5 mL. A small volume of diethyl ether (ca. 3 mL) was slowly
infused into the solution producing powdery precipitates. The products were
separated by centrifugation and dried under vacuum. Na6[Al2(L1)3]. Anal. Calcd for
[5] (a) O. Mamula, A. von Zelewsky, T. Bark, G. Bernardinelli, Angew. Chem. 111
(1999) 3129;
O. Mamula, A. von Zelewsky, T. Bark, G. Bernardinelli, ibid, Angew. Chem. Int.
Ed. 38 (1999) 2945;
(b) A. Erxleben, Inorg. Chem. 40 (2001) 2928.
[6] J.-M. Lehn, A. Rigault, J. Siegel, J. Harrowfield, B. Chevrier, D. Moras, Proc. Nat. Acad.
Sci. U.S.A. 84 (1987) 2565.
[7] M. Albrecht, S. Kotila, Chem. Commun. (1996) 2309.
[8] M. Albrecht, S. Kotila, Angew. Chem. 107 (1995) 2285;
Angew. Chem. Int. Ed Engl. 34 (1995) 2134.
[9] M. Albrecht, C. Riether, Chem. Ber. 129 (1996) 829.
[10] M. Albrecht, M. Schneider, H. Röttele, Chem. Ber. 130 (1997) 615.
[11] M. Albrecht, Chem. Eur. J. 6 (2000) 3485.
[12] E.C. Constable, M. Neuburger, L. Whall, M. Zehnder, New J. Chem. 22 (1998) 219.
[13] W. Zarges, J. Hall, J.-M. Lehn, C. Bolm, Helv. Chim. Acta 74 (1991) 1843.
[14] J. Xu, T.N. Parac, K.N. Raymond, Angew. Chem. 111 (1999) 3055;
Angew. Chem. Int. Ed. 38 (1999) 2878.
[15] A. Bilyk, M.M. Harding, P. Turner, T.W. Hambley, J. Chem. Soc. Dalton Trans. (1994)
2783.
[16] A.L. Airey, G.F. Swiegers, A.C. Willis, S.B. Wild, J. Chem. Soc. Chem. Commun.
(1995) 695.
[17] A. Bilyk, M.M. Harding, J. Chem. Soc. Chem. Commun. (1995) 1697.
[18] A. Bilyk, M.M. Harding, P. Turner, T.W. Hambley, J. Chem. Soc. Dalton Trans. (1995)
2549.
[19] E.J. Corey, C.L. Cywin, M.C. Noe, Tetrahedron Lett. 35 (1994) 69.
[20] E.J. Enemark, T.D.P. Stack, Angew. Chem. 107 (1995) 1082;
Angew. Chem. Int. Ed Engl. 34 (1995) 996.
[21] E.J. Enemark, T.D.P. Stack, Angew. Chem. 110 (1998) 977;
Angew. Chem. Int. Ed. 37 (1998) 932.
[22] M. Meyer, B. Kersting, R.E. Powers, K.N. Raymond, Inorg. Chem. 36 (1997) 5179.
[23] M. Albrecht, M. Schneider, R. Fröhlich, New J. Chem. 22 (1998) 753.
[24] M. Albrecht, S. Kotila, Chem. Commun. (1996) 2309.
[25] (a) C. Lodeiro, F. Pina, Coord. Chem. Rev. 253 (2009) 1353;
(b) M.R. Bermejo, M. Vazquez, M. Sanmartin, J. Garcia-Deibe, M. Fondo, C.
Lodeiro, New J. Chem. 26 (2002) 1365;
C
81H66Al2N6Na6O12: C, 64.54; H, 4.41; N, 5.58. Found: C, 64.74; H, 4.15; N, 4.94%.
Yield: 53%. IR (KBr, cm-1): 1635 [ν(C=N)imine]; 1596 [ν(C=C)ar]. MS (ESI-, m/z):
461 [AlL1–4H]-, 923 [Al2(L1)2–7H]-, 945 [Al2(L1)2Na-8H]-, 1405 [Al2(L1)3Na2–9H]-,
1427 [Al2(L1)3Na3–10H]-. Na6[Ga2(L1)3]. Anal. Calcd for C81H66Ga2N6Na6O12: C,
61.08; H, 4.18; N, 5.28. Found: C, 61.66; H, 3.34; N, 5.55%. Yield: 53%. IR (KBr, cm-1):
1633 [ν(C=N)imine]; 1595 [ν(C=C)ar]. MS (ESI-, m/z): 437 [L1–1H]+, 459
[L1Na-2H]+, 503 [Ga(L1)-4H]+, 1009 [Ga2(L1)2–5H]+, 1031 [Ga2(L1)2Na-6H]+
.
Na6[In2(L1)3]. Anal. Calcd for C81H66In2N6Na6O12: C, 57.81; H, 3.95; N, 4.99.
Found: C, 41.80; H, 3.15; N, 3.26%. Yield: 53%. IR (KBr, cm-1): 1632 [ν(C=N)imine];
1592 [ν(C=C)ar]. MS (ESI-, m/z): 549 [In(L1)-4H]+, 1121 [In2(L1)2Na-8H]+. [Al2
(L2)3]. Anal. Calcd for C99H88Al2N12O14: C, 68.98; H, 5.15; N, 9.75. Found: C, 68.69; H,
4.15; N, 8.89%. Yield: 53%. IR (KBr, cm-1): 1612 [ν(C=N)imine]; 1567, 1460
[ν(C=C)ar and ν(C=N)py]. MS (ESI-, m/z): 1039 [Al(L2)2–4H]+. [Ga2(L2)3]. Anal.
Calcd for C98H82Ga2N12O11: C, 67.74; H, 4.71; N, 9.58. Found: C, 67.24; H, 4.21; N,
8.84%. Yield: 53%. IR (KBr, cm-1): 1615 [ν(C=N)imine]; 1563, 1455 [ν(C=C)ar and
ν(C=N)py]. MS (ESI-, m/z): 1081 [Ga(L2)2–4H]+
99H82In2N12O11: C, 64.43; H, 4.48; N, 9.11. Found: C, 64.11; H, 4.26; N, 9.09%.
Yield: 53%. IR (KBr, cm-1): 1623 [ν(C=N)imine]; 1594, 1447 [ν(C=C)ar and
ν(C=N)py]. MS (ESI-, m/z): 1127 [In(L2)2–4H]+
.
[In2(L2)3]. Anal. Calcd for
C
.
[29] Elemental analyses were carried out at the REQUIMTE DQ Service (Universidade
Nova de Lisboa), on a Thermo Finnigan-CE Flash-EA 1112- CHNS instrument.
Infrared spectra were recorded as KBr discs using Bio-Rad FTS 175-C spectropho-
tometer. Proton NMR spectra were recorded using a Bruker WM-400 spectrometer.
[30] (a) N.S. Grill, R.H. Nuttall, D.E. Scaife, D.W. Sharp, J. Inorg. Nucl. Chem. 18 (1961) 79;
(b) S. Aime, M. Botta, U. Casellato, S. Tamburini, P.A. Vigato, Inorg. Chem. 34
(1995) 5825.
[31] Absorption spectra were recorded on a Shimadzu UV-2501PC or in a Perkin Elmer
lambda 35 spectrophotometer. Fluorescence emission spectra were recorded on a
Horiba–Jobin–Yvon SPEX Fluorolog 3.22 or a Perkin Elmer LS45 spectrofluori-
meters. The linearity of the fluorescence emission versus concentration was
checked in the concentration range used (10–4 to 10–6 M). A correction for the
absorbed light was performed when necessary. All spectrofluorimetric titrations
were performed as follows: the stock solutions of the ligand (ca. 1.10–3 M) were
prepared by dissolving an appropriate amount of the ligand in a 50 mL volumetric
flask and diluting to the mark with acetonitrile (ligand L1) and dichloromethane
(ligand L2) UVA-sol. All measurements were performed at 298 K. The titration
solutions (ca. [L]=1.0.10–5 M) were prepared by appropriate dilution of the stock
solutions. Titrations of the ligand were carried out by addition of microliter
amounts of standard solutions of the ions in acetonitrile or dichloromethane.
[32] R.T. Bronson, M. Montalti, L. Prodi, N. Zaccheroni, R.D. Lamb, N.K. Dalley, R.M. Izatt,
J.S. Bradshaw, P.B. Savage, Tetrahedron 60 (2004) 11139.
(c) C. Bazzicalipi, A. Bencini, E. Berni, A. Bianchi, A. Danesi, C. Giorgi, B. Valtancoli,
C. Lodeiro, J.C. Lima, F. Pina, M.A. Bernardo, Inorg. Chem. 43 (2004) 5134;
(d) A. Tamayo, B. Pedras, C. Lodeiro, L. Escriche, J. Casabo, J.L. Capelo, B. Covelo, R.
Kivekas, R. Sillanpaa, Inorg. Chem. 46 (2007) 7818;
(e) M.J. Mayoral, P. Ovejero, J.A. Campo, J.V. Heras, E. Pinilla, M.R. Torres, C.
Lodeiro, M. Cano, Dalton Trans. (2008) 6912.
[26] M. Albrecht, I. Janser, H. Houjou, R. Fröhlich, Chem. Eur. J. 10 (2004) 2839.
[27] Synthesis of L1 and L2. The synthesis of L1 was carried out through the slow
addition of 4,4′-methylene-dianiline to an ethanolic solution of 2,3-dihydrox-
ybenzaldehyde using the methodology reported previously Albrecht et al. [26]
The synthesis of L2 was attempted through the slow addition of 4,4′-methylene-
dianiline (0.11419 g, 0.57 mmol) in absolute ethanol (20 mL) to a solution of 8-
hydroxyquinoline-2-carbaldehyde (0.1766 g, 1.02 mmol) in the same solvent