1476
A. Tomatsu et al.
LETTER
5b20: (i) 9, DMF, POCl3, 60 °C, 1 d (1217 was obtained); (ii)
NaBH4, aq NaOH, THF, rt, 0.5 h;17 (iii) Ac2O, pyridine, rt, 1 d.
5c21: 9, (n-Bu) 4NBr3, MeOH/CH2Cl2, rt, 1 d.22
The present method could become one of the effective
procedures for the oxidative demethylation of hydro-
quinone dimethyl ethers to quinones and could be applied
to the syntheses of the structurally complex quinones.
5d23: (i) 2,5-dimethoxy-4-nitroaniline, AcOH, NaNO2,
H2SO4, 40 °C, 0.5 h, then CuCl, HCl, 80 °C, 20 min;24,25 (ii)
FeCl3∑6H2O, NH2NH2∑H2O, activated carbon, MeOH, 65 °C,
1 h;25,26 (iii) Ac2O, pyridine, rt, 1 d.
A typical experimental procedure is as follows: To a solu-
tion of 1 (61.0 mg, 0.324 mmol) in dioxane (0.65 ml) CoF3
(151 mg, 1.30 mmol) was added at rt. To this H2O (0.0583
ml, 3.24 mmol) was added at rt and the heterogeneous
mixture was vigorously stirred at rt for 1 h. H2O was add-
ed and the mixture was extracted with ethyl acetate. The
extracts were washed with saturated aqueous NaCl, dried,
and concentrated. The residue was chromatographed on
silica gel (3 g) with 5 : 1 hexane-ethyl acetate to afford 2
(44.1 mg, 86%) as yellow crystals.
76: 13, 1,2-ethanediol, TsOH, benzene, reflux, 2 h.
8: 12, 1,2-ethanediol, TsOH, benzene, reflux, 4 h.
1116: 2,5-dimethoxy-4-nitroaniline, Ac2O, pyridine, rt, 1 d.
(12) We handled CoF3 (Aldrich) in a glove bag under an argon
atmosphere.
(13) Besides dioxane and acetonitrile, nitromethane could also be
used as the solvent. Acetone and t-BuOH could also be used
although longer reaction times were required.
(14) The obtained quinones were characterized by analytical data
(NMR, IR, and MS spectra and mp). The known quinones are
as follows: 4a (= 2), commercially available; 4b,
commercially available; 4c, see ref 19; 4d, see ref 27; 6a,
commercially available; 6b, see ref 20, 28; 6c, see ref 29; 6d,
see ref 30; quinone derived from 7, see ref 6.
References and Notes
(1) Patai, S.; Rappoport, Z. The Chemistry of the Quinonoid
Compounds; John Wiley & Sons: Chichester, 1988; Vol 2,
Part 1 and Part 2; Thomson, R. H. Naturally Occurring
Quinones IV Recent Advances; Blackie Academic &
Professional: London, 1997; Gallagher, P. T. Contemp. Org.
Synth. 1996, 3, 433.
(15) Rao, D. V.; Ulrich, H.; Sayigh, A. A. R. J. Org. Chem. 1975,
40, 2548.
(16) Fisher, G. H.; Moreno, H. R.; Oatis, J. E., Jr.; Schultz, H. P.
J. Med. Chem. 1975, 18, 746; Rubenstein, L. J. Chem. Soc.
1925, 1998.
(2) Musgrave, O. C. Chem. Rev. 1969, 69, 499.
(3) Snyder, C. D.; Rapoport, H. J. Am. Chem. Soc. 1972, 94, 227.
(4) Jacob, P., III; Callery, P. S.; Shulgin, A. T.; Castagnoli, N., Jr.
J. Org. Chem. 1976, 41, 3627.
(5) Syper, L.; Kloc, K.; Mlochowski, J.; Szulc, Z. Synthesis, 1979,
521; Syper, L.; Kloc, K.; Mlochowski, J. Tetrahedron 1980,
36, 123.
(6) Kloc, K.; Mlochowski, J.; Syper, L. Chem. Lett. 1980, 725.
(7) Araya, R.; Tapia, R.; Valderrama, J. A. J. Chem. Research (S)
1987, 84.
(8) Tanoue, Y.; Sakata, K.; Hashimoto, M.; Morishita, S.;
Hamada, M.; Kai, N.; Nagai, T. Bull. Chem. Soc. Jpn. 1994,
67, 2593.
(17) Staab, H. A.; Herz, C. P.; Henke, H.-E. Chem. Ber. 1977, 110,
3351; Nicoletti, T. M.; Raston, C. L., Sargent, M. V. J. Chem.
Soc., Perkin Trans. 1, 1990, 133.
(18) Tanoue, Y.; Terada, A.; Matsumoto, Y. Bull. Chem. Soc. Jpn.
1989, 62, 2736; Syper, L. Synthesis, 1989, 167.
(19) Satomi, T.; Takeda, M.; Tanaka, M. Jpn. Kokai Tokkyo Koho
JP 11 21262 [99 21262]; Chem. Abstr. 1999, 130, 178750.
(20) Nakao, H.; Fukushima, M.; Torizuka, T. Sankyo Kenkyusho
Nempo 1970, 22, 90; Chem Abstr. 1971, 75, 5400.
(21) McHale, D.; Mamalis, P.; Green, J.; Marcinkiewicz, S.
J. Chem Soc. 1958, 1600; Carreño, M. C.; Ruano, J. L. G.;
Sanz, G.; Toledo, M. A.; Urbano, A. J. Org. Chem. 1995, 60,
5328.
(9) CoF3 has previously been used for oxidative couplings to
biaryls (in trifluoroacetic acid, reflux), see: McKillop, A.;
Turrell, A. G.; Young, D. W.; Taylor, E. C. J. Am. Chem. Soc.
1980, 102, 6504; Debad, J. D.; Morris, J. C.; Lynch, V.;
Magnus, P.; Bard, A. J. J. Am. Chem. Soc. 1996, 118, 2374;
Debad, J. D.; Morris, J. C.; Magnus, P.; Bard, A. J. J. Org.
Chem. 1997, 62, 530.
(10) According to CRC Handbook of Chemistry and Physics (79th
ed.; Lide, D. R., Ed.; CRC Press: Boca Raton, Florida, 1998-
1999; p 8-21), standard reduction potentials are as follows:
Ag(II) + e = Ag(I), 1.98 V; Co(III) + e = Co(II), 1.92 V;
Ce(IV) + e = Ce(III), 1.72 V.
(22) Kajigaeshi, S.; Kakinami, T.; Okamoto, T.; Nakamura, H.;
Fujikawa, M. Bull. Chem. Soc. Jpn. 1987, 60, 4187.
(23) Kitamura, M.; Ito, T.; Sasaki, N. Japan Kokai 74 130721;
Chem. Abstr. 1975, 83, 18986; Takahashi, H.; Nishi, K. Japan
Kokai 76 68629; Chem. Abstr. 1977, 86, 56731.
(24) Gunstone, F. D.; Tucker, S. H. In Org. Synth.; Rabjohn, N.
Ed.; John Wiley & Sons: New York, 1963; Collec. Vol. 4, p
160.
(25) Clive, D. L. J.; Angoh, A. G.; Bennett, S. M. J. Org. Chem.
1987, 52, 1339.
(26) Hirashima, T.; Manabe, O. Chem. Lett. 1975, 259.
(27) Skarzewski, J. Tetrahedron 1984, 40, 4997,
(28) Lin, A. J.; Cosby, L. A.; Shansky, C. W.; Sartorelli, A. C.
J. Med. Chem. 1972, 15, 1247.
(29) Andrews, K. J. M.; Marrian, D. H.; Maxwell, D. R. J. Chem.
Soc. 1956, 1844; Hegedus, L. S.; Mulhern, T. A.; Mori, A.
J. Org. Chem. 1985, 50, 4282; Murphy, W. S.; Bertrand, M.
J. Chem. Soc., Perkin Trans. 1, 1998, 4115.
(30) Kelly, T. R.; Echavarren, A.; Behforouz, M. J. Org. Chem.
1983, 48, 3849.
(11) The hydroquinone dimethyl ethers used in this study were
characterized by analytical data (NMR, IR, and MS spectra
and mp) and were prepared from the commercially available
compounds as follows.
1: (i) 2, H2, Pd/C, acetone, rt, 1 d; (ii) Me2SO4, K2CO3,
acetone, rt, 2 h.
3b5: (i) 4b, H2, Pd/C, acetone, rt, 1 d; (ii) Me2SO4, K2CO3,
acetone, rt, 2.5 h.
3c19: (i) 1, DMF, POCl3, 60 °C, 1 d17 (1318 was obtained); (ii)
NaBH4, aq NaOH, THF, rt, 0.5 h.17
3d: 3c, Ac2O, pyridine, rt, 1 d.
Article Identifier:
1437-2096,E;1999,0,09,1474,1476,ftx,en;Y13499ST.pdf
5a4,5: (i) 6a, H2, Pd/C, acetone, rt, 1 d; (ii) Me2SO4, K2CO3,
acetone, rt, 1 d.
Synlett 1999, No. 9, 1474–1476 ISSN 0936-5214 © Thieme Stuttgart · New York