M. Ramezani, R. L. White / Tetrahedron: Asymmetry 22 (2011) 1473–1478
1477
2. (a) Concellón, J. M.; Rodrígez-Solla, H. Curr. Org. Chem. 2008, 12, 524–543; (b)
Ohfune, Y.; Shinada, T. Eur. J. Org. Chem. 2005, 5127–5143; (c) Gryko, D.;
Chałko, J.; Jurczak, J. Chirality 2003, 15, 514–541.
gentle magnetic stirring in defined medium containing DL-serine
(50 mL). Samples (300 L) were removed at various times and cen-
l
trifuged (15,400g, 10 min). Supernatants were stored at ꢂ15 °C for
3. Reetz, M. T. Chem. Rev. 1999, 99, 1121–1162.
4. Coppola, G. M.; Schuster, H. F. Asymmetric Synthesis. Construction of Chiral
Molecules Using Amino Acids; John Wiley: New York, 1987. for syntheses from
serine, see pp 127–145.
5. (a) Constantinou-Kokotou, V. Lett. Peptide Sci. 2002, 9, 143–152; (b) Kulkarni, Y.
S. Aldrichim. Acta 1999, 32, 18–27; (c) Meffre, P.; Vo-Quang, L.; Vo-Quang, Y.; Le
Goffic, F. In Amino Acid Derivatives, A Practical Approach; Barrett, G. C., Ed.;
Oxford, 1999; pp 115–131; (d) Di Giovanni, M. C.; Misiti, D.; Zappia, G. Gazz.
Chim. Ital. 1997, 127, 475–481; (e) Gołe˛biowski, A.; Jurczak, J. Synlett 1993,
HPLC analysis.
4.5. Identification of metabolic end-products
The supernatant from
a serine resuspension experiment
(800 mM, 48 h incubation) was titrated to pH 9.5 with 5 M NaOH
and lyophilized. A portion of the lyophilzed residue (ca. 100 mg)
was dissolved in D2O for NMR analysis. Resonances in the NMR
spectra were assigned by chemical shift comparisons with stan-
dard samples. The relative amounts of the end-products were cal-
culated from the integrated areas of the 1H NMR signals for the
methyl groups of acetate, butyrate and lactate at d 1.84, 0.81 and
1.26 ppm, respectively.
241–245; (f) Williams, R. M. Synthesis of Optically Active
a-Amino Acids;
Pergamon Press: Oxford, 1989. pp 134–154.
6. Liang, X.; Andersch, J.; Bols, M. J. Chem. Soc., Perkin Trans. 1 2001, 2136–2157.
7. N,N-Dibenzyl-O-methylsulfonyl serine methyl ester: (a) Couturier, C.; Blanchet,
J.; Schlama, T.; Zhu, J. Org. Lett. 2006, 8, 2183–2186; Iodoalanine: (b) Rilatt, I.;
Caggiano, L.; Jackson, R. F. W. Synlett 2005, 2701–2719; 4-ethynyl-oxazolidine:
(c) Reginato, G.; Meffre, P.; Gaggini, F. Amino Acids 2005, 29, 81–87; serinal
hemiacetal: (d) Yoo, D.; Oh, J. S.; Lee, D.-W.; Kim, Y. G. J. Org. Chem. 2003, 68,
2979–2982; alaninol: (e) Sibi, M. P.; Rutherford, D.; Renhowe, P. A.; Li, B. J. Am.
Chem. Soc. 1999, 121, 7509–7516; Cbz-serinal OBO ester: (f) Blaskovich, M. A.;
Lajoie, G. A. J. Am. Chem. Soc. 1993, 115, 5021–5030; b-lactones: (g) Arnold, L.
D.; Drover, J. C. G.; Vederas, J. C. J. Am. Chem. Soc. 1987, 109, 4649–4659.
8. (a) Maurer, P. J.; Takahata, H.; Rapoport, H. J. Am. Chem. Soc. 1984, 106, 1095–
1098; (b) Beaulieu, P. L.; Schiller, P. W. Tetrahedron Lett. 1988, 29, 2019–2022.
9. Glycosidases: (a) Ribes, C.; Falomir, E.; Murga, J.; Carda, M.; Marco, J. A. Org.
4.5.1. Residue from serine catabolism
1H NMR d 4.04 (q, J = 6.9 Hz), 1.26 (d, J = 6.7 Hz) [lactate]; 2.08
(t, J = 7.3 Hz), 1.55–1.41 (m), 0.81 (t, J = 7.3 Hz) [butyrate]; 1.84
(s) [acetate]; 3.94–3.81 (AB of ABX, JAB = 12.2 Hz), 3.74 (X of ABX,
apparent t, splittings of 4.9 and 4.3 Hz) [serine]. 13C NMR d 185.3
(s), 71.2 (d), 22.8 (q) [lactate]; 184.2 (s), 26.0 (q) [acetate]; 175.9
(s), 63.2 (t), 59.1 (d) [serine]; 42.3, 22.0, 16.0 [butyrate].
Biomol. Chem. 2009, 7, 1355–1360;
a-glucosidase: (b) Ribes, C.; Falomir, E.;
Carda, M.; Marco, J. A. J. Org. Chem. 2008, 73, 7779–7782; endoththelin
converting enzyme: (c) Hosokawa, S.; Fumiyama, H.; Fukuda, H.; Fukuda, T.;
Seki, M.; Tatsuta, K. Tetrahedron Lett. 2007, 48, 7305–7308;
Jeon, J.; Lee, J. H.; Kim, J.-W.; Kim, Y. G. Tetrahedron: Asymmetry 2007, 18, 2448–
2453; -glucosidase: (e) Hulme, A. N.; Montgomery, C. H. Tetrahedron Lett.
a-galactosidase: (d)
a
4.6. Preparation of D-serine by cell suspensions
2003, 44, 7649–7653; neuraminidase: (f) Hanessian, S.; Bayrakdarian, M.; Luo,
X. J. Am. Chem. Soc. 2002, 124, 4716–4721.
10. Kaitocephalin: (a) Yu, S.; Zhu, S.; Pan, X.; Yang, J.; Ma, D. Tetrahedron 2011, 67,
1673–1680; kaitocephalin: (b) Hamada, M.; Shinada, T.; Ohfune, Y. Org. Lett.
2009, 11, 4664–4667; bulgecinine (c) Toumi, M.; Couty, F.; Evano, G.
Tetrahedron Lett. 2008, 49, 1175–1179; b-hydroxyvaline: (d) Dettwiler, J. E.;
Bélec, L.; Lubell, W. D. Can. J. Chem. 2005, 83, 793–800; bulgecinine: (e) Khalaf,
J. K.; Datta, A. J. Org. Chem. 2004, 69, 387–390; b-hydroxyvaline: (f) Dettwiler, J.
E.; Lubell, W. D. J. Org. Chem. 2003, 68, 177–179; bulgecinine: (g) Krasin´ ski, A.;
Jurczak, J. Tetrahedron Lett. 2001, 42, 2019–2021.
F. nucleatum resuspended in a phosphate buffer (5 g damp cells/
100 mL) containing DL-serine (8.4 g, 800 mM) was incubated anaer-
obically with gentle magnetic stirring for 42 h at 37 °C and centri-
fuged (8200g, 15 min). The supernatant was applied to Amberlite
IR-120 (2.5 ꢀ 50 cm column, H+ form) at a flow rate of 5.0 mL/
min. The column was washed with water (500 mL) and eluted with
0.5 M aqueous ammonia (3 L). Fractions (200 mL) containing ami-
no acid (ninhydrin spot test) were combined and evaporated to
dryness in vacuo. The residue (approximately 3.5 g) was dissolved
in hot water (100 mL), treated with decolorizing charcoal (2 g), and
filtered through Celite. Concentration of the filtrate in vacuo and
11. Homokainoids: (a) Chiou, W.-H.; Schoenfelder, A.; Sun, L.; Mann, A.; Ojima, I. J.
Org. Chem. 2007, 72, 9418–9425; isodomoic acid: (b) Ni, Y.; Amarasinghe, K. K.
D.; Ksebati, B.; Montgomery, J. Org. Lett. 2003, 5, 3771–3773; a-kainic acid: (c)
Campbell, A. D.; Raynham, T. M.; Taylor, R. J. K. J. Chem. Soc., Perkin Trans. 1
2000, 3194–3204.
12. Körner, C.; Raiber, E.-A.; Keegan, S. E. M.; Nicolau, D. C.; Sheppard, T. D.; Tabor,
A. B. Tetrahedron Lett. 2010, 51, 6381–6383.
13. Toumi, M.; Couty, F.; Evano, G. Angew. Chem., Int. Ed. 2007, 46, 572–575.
14. 5-Oxo-piperazine-2-carboxylic acid: (a) Guitot, K.; Carboni, S.; Reiser, O.;
Piarulli, U. J. Org. Chem. 2009, 74, 8433–8436; 3-hydroxypipecolic acid: (b)
Liang, N.; Datta, A. J. Org. Chem. 2005, 70, 10182–10185; pyrrolidines: (c) Kim,
Y.-A.; Oh, S.-M.; Han, S.-Y. Bull. Korean Chem. Soc. 2001, 22, 327–329;
swainsonine: (d) Razavi, H.; Polt, R. J. Org. Chem. 2000, 65, 5693–5706.
15. Phalluside-1 and Sch II: (a) Black, F. J.; Kocienski, P. J. Org. Biomol. Chem. 2010,
8, 1188–1193; sphingosine: (b) Lee, J.-M.; Lim, H.-S.; Chung, S.-K. Tetrahedron:
Asymmetry 2002, 13, 343–347.
the addition of ethanol yielded
D
-serine (3.47 g, 83% recovery),
mp 213–215 °C, ½a D25
ꢃ
¼ ꢂ15:7 (c 1, 1 M HCl), 98% chemical purity
by HPLC, >99% ee by HPLC, Ref. 55 mp 217–219 °C, Ref. 56
½
a 2D3
ꢃ
¼ ꢂ15:0 (c 4, 1 M HCl). 1H NMR d 3.98–3.86 (overlapping AB
quartets of ABX, JAB = 12.2 Hz, 2H), 3.80 (X of ABX, apparent t, split-
tings of 4.9 and 4.3 Hz, 1H). 13C NMR d 175.1, 62.8, 59.0; ESI+MS
(MeOH–H2O, 1:1, 20 l
L/min) m/z 106 [M+H]+; CID of m/z 106:
16. Pickersgill, I. F.; Rapoport, H. J. Org. Chem. 2000, 65, 4048–4057.
17. Ikeda, M. Adv. Biochem. Eng. Biotechnol. 2003, 79, 1–35.
18. Yamada, S.; Wada, M.; Izuo, N.; Chibata, I. Appl. Environ. Microbiol. 1976, 32, 1–
6.
19. Candela, T.; Fouet, A. Mol. Microbiol. 2006, 60, 1091–1098.
20. Umemura, I.; Yanagiya, K.; Komatsubara, S.; Sato, T.; Tosa, T. Appl. Microbiol.
Biotechnol. 1992, 36, 722–726.
21. Yagasaki, M.; Ozaki, A. J. Mol. Catal. B: Enzym. 1998, 4, 1–11.
22. Chang, Y.-F.; Massey, S. C. Prep. Biochem. 1980, 10, 215–227.
23. Senuma, M.; Otsuki, O.; Sakata, N.; Furui, M.; Tosa, T. J. Ferment. Bioeng. 1989,
67, 233–237.
24. Levadoux, W.; Trani, M.; Lortie, R.; Kerr, D.; Groleau, D. J. Biosci. Bioeng. 2002,
93, 557–562.
25. Takahashi, E.; Furui, M.; Shibatani, T. Biotechnol. Tech. 1997, 11, 913–916.
26. Yagasaki, M.; Ozaki, A.; Hashimoto, Y. Biosci. Biotech. Biochem. 1993, 57, 1499–
1502.
27. Mochizuki, K.; Miyazaki, K. Enzyme Microb. Technol. 2007, 41, 318–321.
28. (a) Takahashi, E.; Furui, M.; Shibatani, T. Biotechnol. Lett. 1997, 19, 245–249; (b)
Takahashi, E.; Furui, M.; Seko, H.; Shibatani, T. Appl. Microbiol. Biotechnol. 1997,
47, 347–351.
m/z 89 (2), 88 (26), 60 (100).
Acknowledgements
We thank the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC) and the Innovations in Chemistry Fund,
Department of Chemistry, Dalhousie University, for financial sup-
port; and the Ministry of Health and Medical Education, Iran, for
partial support to M.R. We are grateful to NMR-3 and MMSlab
for access to spectrometers, the NRC Institute of Marine Biosci-
ences for the use of the polarimeter, Dr. H. N. Shah for the F. nucle-
atum culture, Dr. S. F. Lee for providing advice and facilities to
culture anaerobic bacteria, and S. E. MacIntosh for assistance with
preliminary experiments.
29. Takahashi, E.; Furui, M.; Seko, H.; Shibatani, T. Appl. Microbiol. Biotechnol. 1997,
47, 173–179.
References
30. Zhang, Z. Tetrahedron Lett. 2008, 49, 6468–6470.
1. (a) Ager, D. J. Amino Acids. In Handbook of Chiral Chemicals, 2nd ed.; Ager, D. J.,
Ed., 2nd ed.; CRC Press: Boca Raton, 2006; pp 11–30; (b) Challenger, C. A. Chiral
Intermediates; Ashgate: Aldershot, 2001. pp 27–76.
31. Fotheringham, I. G. Engineering Microbial Pathways for Amino Acid
Production. In Biotechnology, 2nd ed.; Kelly, D. R., Ed.; Wiley-VCH:
Weinheim, 2000; Vol. 8b, pp 313–322.