amine addition.5 Thus, the complexation of the boron with the
C-2,4 hydroxy and amine groups holds the nitrogen atom in
such a way that the preferred Si face attack at the diastereotopic
b-carbon atom, as shown in transition state A (Fig. 1), leads to
the formation of 4a.¶ However, transition state B (Fig. 1), in
which Re face attack leads to the formation of the other isomer,
is destabilised due to the non-bonded interactions of the a-
olefinic hydrogen with the C-1 axial hydrogen and C-3 O-
benzyl group.
In the subsequent steps, lactone 4a was reduced with LAH in
Et2O, and the primary alcohol 5a (colorless solid, 84%) thus
obtained was peracetylated to afford 5b (80%).∑ In the 1H NMR
spectra of 5a and 5b, H-3 showed a double doublet with large
coupling constants (J2,3 and J3,4 ~ 8.8 Hz).§ This indicated the
axial–axial relationship of H-3 with H-2 and H-4, confirming
the change in conformation of piperidine ring from 1C4 to 4C1.
Finally, removal of the benzyl groups in 5a was achieved in one
step using HCO2NH4 and 10% Pd/C in MeOH to give 1-deoxy-
l-ido-homonojirimycin 6 (90%). The 1H and 13C NMR spectra
and analytical data are in agreement with the proposed structure
with the 4C1 conformation.§
In conclusion, the one pot reaction sequence of introduction
of amine functionality and concomitant intramolecular con-
jugate addition to d-glucose derived a,b-unsaturated ester
provides a unique strategy for the synthesis of homoazasugars.
Easy availability of starting materials, mild reaction conditions,
high diastereoselectivity and good yields make the route
attractive and indicate that it could operate on a gram scale.
Work is in progress to study the intermolecular Michael
addition of amines to 2 and its applications to the synthesis of
homoazasugars and indolizidine alkaloids.
(1H, q, J 6.6, 5-H), 3.74 (1H, dd, J 6.2, 6.9, 3-H), 3.78 (1H, d, J 14.0,
NCH2Ph), 4.52 (1H, dd, J 6.6, 6.9, 4-H), 4.68 (1H, d, J 11.7, OCH2Ph), 4.76
(1H, d, J 11.7, OCH2Ph), 4.93 (1H, m, 2-H), 7.24–7.37 (10H, m, Ar-H);
dC(CDCl3, 125 MHz) 21.0, 31.0, 48.4, 57.4, 58.6, 69.4, 73.2, 75.7, 80.1,
127.7, 127.8, 128.0, 128.41, 128.5, 128.6, 137.0, 137.6, 170.3, 174.6 (Calc.
for C23H25NO5: C, 69.85; H, 6.37. Found: C, 69.72; H, 6.15%). For 5a:
white solid, mp 105–107 °C, [a]D 23.66 (c 0.5, CHCl3); nmax(Nujol)/cm21
3500–3050, 3453, 3200 (OH); dH(CDCl3, 300 MHz) 1.87–1.92 (2H, m,
6-H), 2.20–2.55 (3H, br, exchanges with D2O, OH), 2.68–2.77 (2H, m,
1-H), 3.10 (1H, ddd, J 6.11, 4.8, 5.9, 5-H), 3.49 (1H, t, J 8.8, 3-H), 3.65–3.70
(2H, m, 7-H, NCH2Ph), 3.73–3.77 (1H, m, 7-H), 3.83 (1H, d, J 13.2,
NCH2Ph), 3.84–3.90 (1H, m, 2-H), 3.92 (1H, dd, J 4.8, 8.8, 4-H), 4.78 (1H,
d, J 11.7, OCH2Ph), 4.85 (1H, d, J 11.7, OCH2Ph), 7.25–7.40 (10H, m, Ar-
H); dC (CDCl3, 125 MHz) 26.6, 50.7, 58.2, 61.2, 62.0, 69.1, 69.9, 74.4, 82.8,
127.4, 127.7, 127.9, 128.5, 128.6, 138.3, 138.5 (Calc. for C21H27NO4: C,
70.56; H, 7.61. Found: C, 70.36; H, 7.89%). For 5b: thick liquid; [a]D
215.60 (c 0.35, CHCl3); nmax(neat)/cm21 1736 (CNO); dH(CDCl3, 300
MHz) 1.80–1.88 (2H, m, 6-H), 1.92 (3H, s, CH3), 1.95 (3H, s, CH3), 2.01
(3H, s, CH3), 2.61 (1H, dd, J 10.6, 13.5, 1a-H), 2.93 (1H, dd, J 5.5, 13.5, 1e-
H), 3.20–3.24 (1H, m, 5-H), 3.71 (1H, t, J 9.9, 3-H), 3.82 (1H, d, J 13.2,
NCH2Ph), 3.89 (1H, d, J 13.2, NCH2Ph), 3.95–4.10 (2H, m, 7-H), 4.67 (2H,
s, OCH2Ph), 5.06–5.14 (1H, m, 2-H), 5.23 (1H, dd, J 5.5, 9.9, 4-H),
7.21–7.36 (10H, m, Ar-H); dC (CDCl3, 125 MHz) 21.0(s), 23.7, 46.9, 55.0,
58.4, 62.2, 71.0, 71.8, 74.6, 78.6, 127.5, 128.4, 128.7, 138.5, 169.9(s), 171.0
(Calc. for C27H33NO7: C, 67.06; H, 6.88. Found: C, 66.83; H, 6.84%. For
6: foamy solid, mp 132–135 °C; [a]D 213.85 (c 0.8, H2O); nmax(KBr)/
cm21 3336, 3062, 1216, 1094; dH(D2O, 300 MHz) 1.62–1.78 (2H, m, 6-H),
2.62 (1H, dd J 8.2, 13.6, 1a-H), 2.88 (1H, dd J 4.2, 13.6, 1e-H), 3.04–3.18
(1H, m, 5-H), 3.40–3.76 (5H, m, 2-H, 3-H, 4-H, 7-H); dC(D2O, 125 MHz)
30.9, 46.7, 55.1, 62.1, 73.2, 74.5, 75.3 (Calc. for C7H15NO4: C, 47.44; H,
8.53. Found: C, 47.25; H, 8.74%).
1 A. B. Hughes and A. J. Rudge, Nat. Prod. Rep., 1994, 11, 135; P. Sears
and C.-H. Wong, Chem. Commun., 1998, 1161;
2 (a) A. Defoin, H. Sarazin and J. Streith, Helv. Chim. Acta, 1996, 79, 560
and references therein; (b) U. M. Lindstrom and P. Somfai, Tetrahedron
Lett., 1998, 39, 7173; A. J. Rudge, I. Collins, A. B. Holmes and R.
Baker, Angew. Chem., Int. Ed. Engl., 1994, 33, 2320; (c) C. R. R. Matos,
R. S. C. Lopes and C. C. Lopes, Synthesis, 1999, 571; Y. Yoshikuni,
Agric. Biol. Chem., 1988, 52, 121; (d) L. Sun, P. Li, N. Amankulor, W.
Tang, D. W. Landry and K. Zhao, J. Org. Chem., 1998, 63, 6472.
3 Y. Suhara and K. Achiwa, Chem. Pharm. Bull., 1995, 43, 414; C.
Herdeis and T. Schiffer, Tetrahedron, 1996, 52, 14745; C.-H. Wong, L.
Provencher, J. A. Porco Jr., S.-H. Jung, Y.-F. Wang, L. Chen, R. Wang
and D. H. Steensma, J. Org. Chem., 1995, 60, 1492; A. Defoin, H.
Sarazin and J. Streith, Tetrahedron, 1997, 53, 13769; 1997, 53,
13783.
4 D. D. Dhavale, V. N. Desai, M. D. Sindkhedkar, R. S. Mali, C. Castellari
and C. Trombini, Tetrahedron: Asymmetry, 1997, 8, 1475; D. D.
Dhavale, N. N. Saha and V. N. Desai, J. Org. Chem., 1997, 62, 7482.
5 S. Saito, S. Matsumoto, S. Sato, M. Inaba and T. Moriwake,
Heterocycles, 1986, 24, 2785; K. Shishido, Y. Sukegawa and K.
Fukumoto, J. Chem. Soc., Perkin Trans. 1, 1987, 993; T. Wakabayashi
and M. Saito, Tetrahedron Lett., 1977, 93; C. Schneider and C. Borner,
Synlett, 1998, 652; M. G. Banwell, C. T. Bui, H. T. T. Pham and G. W.
Simpson, J. Chem. Soc., Perkin Trans. 1, 1996, 967; R. A. Bunce, C. J.
Peeples and P. B. Jones, J. Org. Chem., 1992, 57, 1727; M. Hirama, T.
Shigemoto, Y. Yamazaki and S. Ito, J. Am. Chem. Soc., 1985, 107,
1797.
6 F. Compernolle, G. Joly, K. Peeters, S. Toppet, G. Hoornaert, A.
Kilonda and B. Bila, Tetrahedron, 1997, 53, 12739; A. Kilonda, F.
Compernolle, S. Toppet and G. J. Hoornaert, Tetrahedron Lett., 1994,
35, 9047;
7 D. Tulshian, R. J. Doll, M. F. Stansberry and A. T. McPhail, J. Org.
Chem., 1991, 56, 6819.
8 M. L. Wolfrom and S. Hanessian, J. Org. Chem., 1962, 27, 1800.
9 L. F. Tietze, Chem. Rev., 1996, 96, 115; L. F. Tietze and U. Beifuss,
Angew. Chem., Int. Ed. Engl., 1993, 32, 131.
10 R. D. Little, M. R. Masjedizadeh, O. Wallquist and J. I. McLoughlin,
Org. React., 1995, 47, 315.
We are thankful to AICTE, New Delhi, for the financial
support, TIFR Bombay for high resolution NMR spectra and to
UGC, New Delhi, for the JRF to V. N. D. We are grateful to
Professor M. S. Wadia for helpful discussions.
Notes and references
1
† As indicated from the H NMR spectrum, the cleavage of the acetonide
group either in the isomeric mixture 2 or in 2b (Z-isomer) with TFA–H2O
afforded hemiacetal 3 (a+b = 7+3) with exclusively E geometry. Acid
catalysed Z ? E isomerisation has been reported (ref. 11).
‡ Our attempts to isolate either the diastereomer or other products in pure
form were unsuccessful. The 1H NMR spectrum of the crude mixture
indicated the presence of signals ( < 10%) corresponding to an ethyl group.
This could be the uncyclised open ester with (5S) configuration. Lactone 4a
was easily removed from the mixture by column chromatography followed
by recrystallisation. The other diastereomer could not be detected even
though the subsequent transformations were conducted without separation
of 4a. For example the direct acetylation of crude mixture of 4a with Ac2O
and DMAP in pyridine gave 4b as the only isolable product in 88%
yield.
¶ This argument would be valid even if lactonisation precedes Michael
addition.
∑ The direct reduction of crude mixture 4a with LAH followed by
peracetylation afforded 5b in 68% yield.
§ Selected data for 4a: white solid, mp 95 °C, [a]D = +38.45 (c 0.5,
CHCl3); nmax(Nujol)/cm21 3500–3300 (OH), 1770 (CNO); dH(CDCl3, 300
MHz) 2.33 (1H, dd, J 6.9, 11.9, 1a-H), 2.42 (1H, dd, J 6.4, 16.7, 6a-H), 2.53
(1H, brd, exchanges with D2O, OH), 2.81 (1H, dd, J 6.0, 16.7, 6e-H), 2.98
(1H, dd, J 2.9, 11.9, 1e-H), 3.44 (1H, d, J 13.4, NCH2Ph), 3.46 (1H, ddd,
J 5.3, 6.0, 6.4, 5-H), 3.63 (1H, dd, J 4.3, 6.8, 3-H), 3.73 (1H, d, J 13.4,
NCH2Ph), 3.90 (1H, m, 2-H), 4.54 (1H, d, J 11.7, OCH2Ph), 4.72 (1H, dd,
J 4.3, 5.3, 4-H), 4.77 (1H, d, J 11.7, OCH2Ph), 7.26–7.37 (10H, m, Ar-H);
dC(CDCl3, 125 MHz) 31.6, 49.9, 58.2, 58.7, 66.5, 72.9, 76.1, 76.9, 127.6,
127.8, 127.9, 128.4, 128.5, 128.6, 136.7, 137.3, 175.2 (Calc). for
C21H23NO4: C, 71.37; H, 6.56. Found: C, 71.62; H, 6.77%). For 4b: white
solid, mp 89–90 °C; [a]D +38.68 (c 0.4, CHCl3); nmax(Nujol)/cm21 1783
(CNO), 1742 (CNO); dH(CDCl3, 300 MHz) 2.01 (3H, s, CH3), 2.48 (1H, dd,
J 6.6, 16.8, 6a-H), 2.62 (1H, dd, J 5.9, 12.5, 1a-H), 2.65 (1H, dd, J 6.6, 16.8,
6e-H), 2.80 (1H, dd, J 3.7, 12.5, 1e-H), 3.43 (1H, d, J 14.0, NCH2Ph), 3.58
11 Stereochemistry of alkenes, in Stereochemistry of Organic Compounds,
ed. E. L. Eliel, S. H. Wilen and L. N. Mander, Wiley, New York, 1994,
p. 579.
Communication 9/05440E
1720
Chem. Commun., 1999, 1719–1720