COMMUNICATIONS
cyclophilin was assessed in a competitive ELISA format.[6]
They were found to bind with IC50 values of 7.3 and 5.7mm,
respectively. Several uncyclized tripeptide intermediates did
not show any activity when tested in the same assay.
H. Schneider, N. Charara, R. Schmitz, S. Wehrli, V. Mikol, M. G. M.
Zurini, V. F. J. Quesniaux, N. R. Movva, Biochemistry 1994, 33, 8218 ±
8224.
[7] T. Fehr, L. Oberer, V. Quesniaux Ryffel, J.-J. Sanglier, W. Schuler, R.
Sedrani (Sandoz Ltd), WO-A 9702285 A1, 1997.
The synthesis of 1 and 2 is based on the RCM reaction,
which has already proven to be one of the most powerful
techniques for the construction of macrocyclic natural prod-
ucts in solution[15] or on solid support,[16] but whose use so far
has been limited to the formation of simple olefins. However,
various macrocyclic, biologically relevant, natural products
embody conjugated 1,3-dienes.[17] For the first time, macro-
cycles containing a cyclic 1,3-diene moiety have been synthe-
sized in good yields by a metathesis reaction, as exemplified
by 1 and 2. As this methodology is extendable to the creation
of analogue libraries, it should be of interest for organic
synthesis in general and natural product synthesis and
medicinal chemistry in particular.
Compounds 1 and 2 are the first synthetic analogues of the
macrocyclic core of sanglifehrin A which bind to cyclophilin.
Indeed, all the open-chain tripeptides tested so far are
inactive in the CyP-binding assay. The reduced affinity of 1
and 2 for cyclophilin compared to sanglifehrin A is a clear
indication that the conformation of these first-generation
macrolides is not yet optimal. In other words, the results
suggest that the conjugated diene is not sufficient to lock the
macrocycle into the ideal three-dimensional conformation.
Therefore, future work will include the preparation of a
library of macrolides based on the chemistry developed herein
and taking into account other functional features of the
sanglifehrins.
[8] a) P. Schwab, M. B. France, J. W. Ziller, R. H. Grubbs, Angew. Chem.
1995, 107, 2179 ± 2181; Angew. Chem. Int. Ed. Engl. 1995, 34, 2039 ±
2041; b) for a recent review on RCM, see R. H. Grubbs, S. Chang,
Tetrahedron 1998, 54, 4413 ± 4450.
[9] K. J. Hale, J. Cai, V. Delisser, S. Manaviazar, S. A. Peak, G. S. Bhatia,
T. C. Collins, N. Jogiya, Tetrahedron 1996, 52, 1047 ± 1068.
[10] U. Schöllkopf, U. Groth, C. Deng, Angew. Chem. 1981, 93, 793 ± 795;
Angew. Chem. Int. Ed. Engl. 1981, 20, 798 ± 799.
[11] R. Bänteli, I. Brun, P. Hall, R. Metternich, Tetrahedron Lett. 1999, 40,
2109 ± 2112.
[12] T. Shioiri, T. Imaeda, Y. Hamada, Heterocycles 1997, 46, 421 ± 442.
[13] a) R. V. Stevens, R. E. Cherpeck, B. L. Harrison, J. Lai, R. Lapalme, J.
Am. Chem. Soc. 1976, 98, 6317 ± 6321; b) T. R. Hoye, A. S. Magee,
W. S. Trumper, Synth. Commun. 1982, 12, 183 ± 187.
[14] The E,E stereochemistry of the dienes 1 and 2 was assessed by
1H NMR spectroscopy (DMSO, 400 MHz) on the basis of the coupling
constants: JH18,H19 15.2 and 14.6 Hz, JH20,H21 15.0 and 14.4 Hz for 1
and 2, respectively.
[15] a) S. J. Miller, H. E. Blackwell, R. H. Grubbs, J. Am. Chem. Soc. 1996,
118, 9606 ± 9614; b) A. Fürstner, K. Langemann, J. Am. Chem. Soc.
1997, 119, 9130 ± 9136; c) Z. Xu, C. W. Johannes, A. F. Houri, D. S. La,
D. A. Cogan, G. E. Hofilena, A. H. Hoveyda, J. Am. Chem. Soc. 1997,
119, 10302 ± 10316; d) A. Fürstner, K. Langemann, Synthesis 1997,
792 ± 803; e) K. C. Nicolaou, F. Roschangar, D. Vourloumis, Angew.
Chem. 1998, 110, 2120 ± 2153; Angew. Chem. Int. Ed. 1998, 37, 2014 ±
2045; f) T. Nishioka, Y. Iwabuchi, H. Irie, S. Hatakeyama, Tetrahedron
Lett. 1998, 39, 5597 ± 5600; g) V. P. Kamat, H. Hagiwara, T. Suzuki, M.
Ando, J. Chem. Soc. Perkin Trans. 1 1998, 2253 ± 2254; h) K. Arakawa,
T. Eguchi, K. Kakinuma, J. Org. Chem. 1998, 63, 4741 ± 4745; i) A.
Fürstner, T. Müller, J. Org. Chem. 1998, 63, 424 ± 425; j) S. F. Martin,
J. M. Humphrey, A. Ali, M. C. Hillier, J. Am. Chem. Soc. 1999, 121,
866 ± 867; k) see also reference [8b] for a recent review.
[16] a) K. C. Nicolaou, N. Winssinger, J. Pastor, S. Ninkovic, F. Sarabia, Y.
He, D. Vourloumis, Z. Yang, T. Li, P. Giannakakou, E. Hamel, Nature
1997, 387, 268 ± 272; b) M. Schuster, J. Pernerstorfer, S. Blechert,
Angew. Chem. 1996, 108, 2111 ± 2112; Angew. Chem. Int. Ed. Engl.
1996, 35, 1979 ± 1980.
[17] Some representative examples of macrocyclic 1,3-dienes are the
macrolactins: A. B. Smith III, G. R. Ott, J. Am. Chem. Soc. 1998, 120,
3935 ± 3948; milbemycins-avermectins: M. T. Crimmins, R. S. Al-
Awar, I. M. Vallin, W. G. Hollis, Jr., R. OꢁMahony, J. G. Lever,
D. M. Bankaitis-Davis, J. Am. Chem. Soc. 1996, 118, 7513 ± 7528;
aplyronines: H. Kigoshi, K. Suenaga, T. Mutou, T. Ishigaki, T. Atsumi,
H. Ishiwata, A. Sakakura, T. Ogawa, M. Ojika, K. Yamada, J. Org.
Chem. 1996, 61, 5326 ± 5351; lasonolide: M. Nowakowski, H. M. R.
Hoffmann, Tetrahedron Lett. 1997, 38, 1001 ± 1004.
Received: March 15, 1999 [Z13162IE]
German version: Angew. Chem. 1999, 111, 2595 ± 2599
Keywords: immunosuppressants
´
metathesis
´
natural
products
[1] For a recent review on cyclosporin, see J. Kallen, V. Mikol, V. F. J.
Quesniaux, M. D. Walkinshaw, E. Schneider-Scherzer, K. Schörgen-
dorfer, G. Weber, H. G. Fliri in Biotechnology, Vol. 7 (Eds.: H.
Kleinkauf, H. von Döhren), WILEY-VCH, Weinheim, 1997, chap. 12,
pp. 535 ± 591.
[2] The result of these efforts was the isolation of two novel immuno-
suppressants, rapamycin and FK506, which also inhibit intracellular
signaling pathways. For a comprehensive overview of their mode of
action, see Perspectives in Drug Discovery and Design, Vol. 2 (Eds.:
P. S. Anderson, G. L. Kenyon, G. R. Marshall), ESCOM Science,
Leiden, 1994, pp. 3 ± 248.
[18] K. C. Nicolaou, T. Ohshima, F. Murphy, S. Barluenga, J. Xu, N.
Winssinger, Chem. Commun. 1999, 809 ± 810.
[3] a) S. L. Schreiber, M. W. Albers, E. J. Brown, Acc. Chem. Res. 1993,
26, 412 ± 420; b) S. L. Schreiber, G. R. Crabtree, Immunol. Today 1992,
13, 136 ± 142.
[4] a) J. Liu, J. D. Farmer, Jr., W. S. Lane, J. Friedman, I. Weissman, S. L.
Schreiber, Cell 1991, 66, 807 ± 815; b) J. Friedman, I. Weissman, Cell
1991, 66, 799 ± 806.
[5] a) J.-J. Sanglier, V. Quesniaux, T. Fehr, H. Hofmann, M. Mahnke, K.
Memmert, W. Schuler, G. Zenke, L. Gschwind, C. Maurer, W.
Schilling, J. Antibiot. 1999, 52, 466 ± 473; b) T. Fehr, J. Kallen, L.
Oberer, J.-J. Sanglier, W. Schilling, J. Antibiot. 1999, 52, 474 ± 479;
c) The details of the X-ray crystallographic structure analysis will be
published elsewhere.
[6] The affinity of the substrates for cyclophilin A was assessed in a
competitive binding assay. The procedure was identical to that
described in the following reference, except that CsA coupled to
bovine serum albumin (BSA) was replaced by SFA coupled to BSA:
2446
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999
1433-7851/99/3816-2446 $ 17.50+.50/0
Angew. Chem. Int. Ed. 1999, 38, No. 16