512
BULANOV et al.
2. E. P. Belov, E. N. Lebedev, Yu. P. Grigorash, et al.,
Monosilane and Semiconductor Materials Technologies
(NIITEKhim, Moscow, 1989) [in Russian].
3. G. G. Devyatykh, V. V. Balabanov, V. I. Zvereva, et al.,
Dokl. Akad. Nauk SSSR 230 (2), 342 (1976).
4. T. Ohmi, M. Nakamura, A. Ohki, et al., J. Electroꢀ
is much lower than for reaction (3) [19]. On the whole,
this matter requires deeper studies.
From the analysis of samples 3–5, it can be seen
that the preliminary purging of calcium hydride and
the entire laboratory unit with a hydrogen (grade A)
flow efficiently decreases the content of residual water,
and the more prolonged is the purging, the lower the
chem. Soc. 139 (9), 2654 (1992).
5. P. G. Sennikov, S. K. Ignatov, A. E. Sadov, et al.,
Zh. Neorg. Khim. 54 (2), 287 (2009) [Russ. J. Inorg.
Chem. 54 (2), 252 (2009)].
6. L. A. Chuprov, S. K. Ignatov, P. G. Sennikov, et al., Proꢀ
ceedings of XII Conference “High Purity Chemicals and
Materials. Preparation, Analysis, Applications" (Nizhni
Novgorod, 2004), p. 223 [in Russian].
concentration of impurity Si2OH6
.
In summary, the possibility of the reduction of
hexafluorodisiloxane with calcium hydride in the synꢀ
thesis of silane from SiF4 has been studied. This reacꢀ
tion is shown to be not determinative for the oxygen
contamination of silane. The reaction of SiF4 with
trace water, probably catalyzed by Ca(OH)2, is most
likely to cause the appearance of impurity Si2OH6 in
“fluoride” silane. However, the hydrolysis of impurity
fluorosilanes cannot be ruled out completely. It has
been established that the preliminary purging of calꢀ
cium hydride and the entire laboratory unit with a
hydrogen (grade A) flow efficiently decreases the conꢀ
centration of impurity Si2OH6 in silane at the stage of
synthesis and excludes the need for deep purification
from this lowꢀvolatile admixture by cryofiltration.
7. H. J. Klockner and M. Eschwey, Chem. Ing. Tech. 60
(11), 815 (1988).
8. A. D. Bulanov, V. V. Balabanov, D. A. Pryakhin, and
O. Yu. Troshin, Neorg. Mater. 38 (3), 356 (2002).
9. P. G. Sennikov, M. A. Ikrin, S. K. Ignatov, et al., Izv.
Akad. Nauk, Ser. Khim., No. 48, 93 (1999).
10. G. G. Devyatykh, E. M. Dianov, A. D. Bulanov, et al.,
Dokl. Akad. Nauk 391 (5), 638 (2003).
11. A. D. Bulanov, V. S. Mikheev, O. Yu. Troshin, and
A. Yu. Lashkov, Zh. Neorg. Khim. 53 (1), 11 (2008)
[Russ. J. Inorg. Chem. 53 (1), 6 (2008)].
12. L. A. Chuprov, P. G. Sennikov, K. G. Tokhadze, et al.,
ACKNOWLEDGMENTS
Neorg. Mater. 42 (8), 1017 (2006).
We are grateful to V.A. Krylov, D.A. Pryakhin, and
L.A. Chuprov for performing chromatographic/mass
spectrometric, mass spectrometric, and IR spectroꢀ
scopic analyses.
13. V. A. Krylov, O. Yu. Chernova, and A. Yu. Sozin, Massꢀ
Spektrometriya
14. V. A. Krylov, A. Yu. Sozin, A. D. Zorin, et al., Massꢀ
Spektrometriya (4), 281 (2008).
4 (2), 125 (2007).
5
This work was supported by the Presidential Grant
for the State Support of Leading Scientific Schools in
the Russian Federation, grant no. NShꢀ4701.2008.3,
and by the Presidium of the Russian Academy of Sciꢀ
ences through program no. 20, para. 2.
15. J. L. Margrave, K. G. Sharp, and P. W. Wilson, J. Am.
Chem. Soc. 92 (6), 1530 (1970).
16. P. G. Sennikov, A. P. Kotkov, S. A. Adamchik, et al.,
Neorg. Mater. 46 (4), 415 (2010).
17. J.ꢀP. Tessier, P. Palau, J. Huot, et al., J. Alloys Compd.
376, 180 (2004).
18. M. Hirscher, M. Becher, M. Haluska, et al., J. Alloys
REFERENCES
Compd. 356–357, 433 (2003).
1. A Report to the Avogadro Working Group of the CCM 19. S. K. Ignatov, P. G. Sennikov, B. S. Ault, et al., J. Phys.
(Kenichi Fujii, Washington, DC, 1998). Chem. 103, 8328 (1999).
RUSSIAN JOURNAL OF INORGANIC CHEMISTRY Vol. 56 No. 4 2011