Page 9 of 11
Journal of the American Chemical Society
11. Kalvet, I.; Deckers, K.; Funes-Ardoiz, I.; Magnin, G.; Sperger,
T.; Kremer, M.; Schoenebeck, F., Selective ortho-Functionalization of
Desymmetrization
Dehydrogenative Silylation. Angew. Chem. Int. Ed. 2017, 56, 1125-
1129.
of
Silacyclobutanes/Intermolecular
1
2
3
4
5
6
7
8
Adamantylarenes Enabled by Dispersion and an Air-Stable
Palladium(I) Dimer. Angew. Chem. Int. Ed. 2020, 59, 7721-7725.
12. Saper, N. I.; Ohgi, A.; Small, D. W.; Semba, K.; Nakao, Y.;
Hartwig, J. F., Nickel-catalysed anti-Markovnikov hydroarylation of
unactivated alkenes with unactivated arenes facilitated by non-covalent
interactions. Nat. Chem. 2020, 12, 276-283.
13. Gridnev, I. D., Attraction versus Repulsion in Rhodium-
Catalyzed Asymmetric Hydrogenation. ChemCatChem 2016, 8, 3463-
3468.
34. Berhal, F.; Esseiva, O.; Martin, C.-H.; Tone, H.; Genet, J.-P.;
Ayad, T.; Ratovelomanana-Vidal, V., (R)-3,5-diCF3-SYNPHOS and
(R)-p-CF3-SYNPHOS, Electron-Poor Diphosphines for Efficient
Room Temperature Rh-Catalyzed Asymmetric Conjugate Addition of
Arylboronic Acids. Org. Lett. 2011, 13, 2806-2809.
35. Sevov, C. S.; Hartwig, J. F., Iridium-Catalyzed Oxidative
Olefination of Furans with Unactivated Alkenes. J. Am. Chem. Soc.
2014, 136, 10625-10631.
9
14. Chen, J.; Gridnev, I. D., Size is Important: Artificial Catalyst
Mimics Behavior of Natural Enzymes. iScience 2020, 23, 100960.
15. Deng, L.; Fu, Y.; Lee, S. Y.; Wang, C.; Liu, P.; Dong, G., Kinetic
Resolution via Rh-Catalyzed C–C Activation of Cyclobutanones at
Room Temperature. J. Am. Chem. Soc. 2019, 141, 16260-16265.
16. Iwamoto, H.; Endo, K.; Ozawa, Y.; Watanabe, Y.; Kubota, K.;
Imamoto, T.; Ito, H., Copper(I)-Catalyzed Enantioconvergent
Borylation of Racemic Benzyl Chlorides Enabled by Quadrant-by-
Quadrant Structure Modification of Chiral Bisphosphine Ligands.
Angew. Chem. Int. Ed. 2019, 58, 11112-11117.
17. Neel, A. J.; Hilton, M. J.; Sigman, M. S.; Toste, F. D., Exploiting
non-covalent π interactions for catalyst design. Nature 2017, 543, 637.
18. Straker, R. N.; Peng, Q.; Mekareeya, A.; Paton, R. S.; Anderson,
E. A., Computational ligand design in enantio- and diastereoselective
ynamide [5+2] cycloisomerization. Nat. Comm. 2016, 7, 10109.
19. Power, P. P., Main-group elements as transition metals. Nature
2010, 463, 171-177.
20. Chen, J.; Xi, T.; Lu, Z., Iminopyridine Oxazoline Iron Catalyst
for Asymmetric Hydroboration of 1,1-Disubtituted Aryl Alkenes. Org.
Lett. 2014, 16, 6452-6455.
21. Chen, J.; Xi, T.; Ren, X.; Cheng, B.; Guo, J.; Lu, Z., Asymmetric
cobalt catalysts for hydroboration of 1,1-disubstituted alkenes. Org.
Chem. Front 2014, 1, 1306-1309.
22. Zhang, L.; Zuo, Z.; Wan, X.; Huang, Z., Cobalt-Catalyzed
Enantioselective Hydroboration of 1,1-Disubstituted Aryl Alkenes. J.
Am. Chem. Soc. 2014, 136, 15501-15504.
23. Thomas, S. P.; Aggarwal, V. K., Asymmetric Hydroboration of
1,1-Disubstituted Alkenes. Angew. Chem. Int. Ed. 2009, 48, 1896-
1898.
24. Jang, W. J.; Song, S. M.; Moon, J. H.; Lee, J. Y.; Yun, J.,
Copper-Catalyzed Enantioselective Hydroboration of Unactivated 1,1-
Disubstituted Alkenes. J. Am. Chem. Soc. 2017, 139, 13660-13663.
25. Teo, W. J.; Ge, S., Cobalt-Catalyzed Enantioselective Synthesis
of Chiral gem-Bis(boryl)alkanes. Angew. Chem. Int. Ed. 2018, 57,
12935-12939.
26. Chen, J.; Lu, Z., Asymmetric hydrofunctionalization of
minimally functionalized alkenes via earth abundant transition metal
catalysis. Org. Chem. Front 2018, 5, 260-272.
27. Zhu, S.; Buchwald, S. L., Enantioselective CuH-Catalyzed Anti-
Markovnikov Hydroamination of 1,1-Disubstituted Alkenes. J. Am.
Chem. Soc. 2014, 136, 15913-15916.
28. Chen, J.; Cheng, B.; Cao, M.; Lu, Z., Iron-Catalyzed
Asymmetric Hydrosilylation of 1,1-Disubstituted Alkenes. Angew.
Chem. Int. Ed. 2015, 54, 4661-4664.
29. Deng, Y.; Wang, H.; Sun, Y.; Wang, X., Principles and
Applications of Enantioselective Hydroformylation of Terminal
Disubstituted Alkenes. ACS Catal. 2015, 5, 6828-6837.
30. Lu, Z.; Buchwald, S. L., Enantioselective Preparation of Arenes
with β-Stereogenic Centers: Confronting the 1,1-Disubstituted Olefin
Problem Using CuH/Pd Cooperative Catalysis. Angew. Chem. Int. Ed.
2020, 59, 16128-16132.
31. Xi, Y.; Hartwig, J. F., Mechanistic Studies of Copper-Catalyzed
Asymmetric Hydroboration of Alkenes. J. Am. Chem. Soc. 2017, 139,
12758-12772.
36. See Supporting Information for details
37. See Supporting Information for discussions.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
38. Qi, X.; Kohler, D. G.; Hull, K. L.; Liu, P., Energy
Decomposition Analyses Reveal the Origins of Catalyst and
Nucleophile Effects on Regioselectivity in Nucleopalladation of
Alkenes. J. Am. Chem. Soc. 2019, 141, 11892-11904.
39. Horn, P. R.; Head-Gordon, M., Polarization contributions to
intermolecular interactions revisited with fragment electric-field
response functions. J Chem Phys 2015, 143, 114111.
40. Horn, P. R.; Mao, Y.; Head-Gordon, M., Probing non-covalent
interactions with a second generation energy decomposition analysis
using absolutely localized molecular orbitals. Phys. Chem. Chem. Phys.
2016, 18, 23067-79.
41. Horn, P. R.; Mao, Y.; Head-Gordon, M., Defining the
contributions of permanent electrostatics, Pauli repulsion, and
dispersion in density functional theory calculations of intermolecular
interaction energies. J. Chem. Phys. 2016, 144, 114107.
42. Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A. T. B.; Wormit,
M.; Kussmann, J.; Lange, A. W.; Behn, A.; Deng, J.; Feng, X.; Ghosh,
D.; Goldey, M.; Horn, P. R.; Jacobson, L. D.; Kaliman, I.; Khaliullin,
R. Z.; Kuś, T.; Landau, A.; Liu, J.; Proynov, E. I.; Rhee, Y. M.; Richard,
R. M.; Rohrdanz, M. A.; Steele, R. P.; Sundstrom, E. J.; Woodcock, H.
L.; Zimmerman, P. M.; Zuev, D.; Albrecht, B.; Alguire, E.; Austin, B.;
Beran, G. J. O.; Bernard, Y. A.; Berquist, E.; Brandhorst, K.; Bravaya,
K. B.; Brown, S. T.; Casanova, D.; Chang, C.-M.; Chen, Y.; Chien, S.
H.; Closser, K. D.; Crittenden, D. L.; Diedenhofen, M.; DiStasio, R.
A.; Do, H.; Dutoi, A. D.; Edgar, R. G.; Fatehi, S.; Fusti-Molnar, L.;
Ghysels, A.; Golubeva-Zadorozhnaya, A.; Gomes, J.; Hanson-Heine,
M. W. D.; Harbach, P. H. P.; Hauser, A. W.; Hohenstein, E. G.; Holden,
Z. C.; Jagau, T.-C.; Ji, H.; Kaduk, B.; Khistyaev, K.; Kim, J.; Kim, J.;
King, R. A.; Klunzinger, P.; Kosenkov, D.; Kowalczyk, T.; Krauter, C.
M.; Lao, K. U.; Laurent, A. D.; Lawler, K. V.; Levchenko, S. V.; Lin,
C. Y.; Liu, F.; Livshits, E.; Lochan, R. C.; Luenser, A.; Manohar, P.;
Manzer, S. F.; Mao, S.-P.; Mardirossian, N.; Marenich, A. V.; Maurer,
S. A.; Mayhall, N. J.; Neuscamman, E.; Oana, C. M.; Olivares-Amaya,
R.; O’Neill, D. P.; Parkhill, J. A.; Perrine, T. M.; Peverati, R.; Prociuk,
A.; Rehn, D. R.; Rosta, E.; Russ, N. J.; Sharada, S. M.; Sharma, S.;
Small, D. W.; Sodt, A.; Stein, T.; Stück, D.; Su, Y.-C.; Thom, A. J. W.;
Tsuchimochi, T.; Vanovschi, V.; Vogt, L.; Vydrov, O.; Wang, T.;
Watson, M. A.; Wenzel, J.; White, A.; Williams, C. F.; Yang, J.;
Yeganeh, S.; Yost, S. R.; You, Z.-Q.; Zhang, I. Y.; Zhang, X.; Zhao,
Y.; Brooks, B. R.; Chan, G. K. L.; Chipman, D. M.; Cramer, C. J.;
Goddard, W. A.; Gordon, M. S.; Hehre, W. J.; Klamt, A.; Schaefer, H.
F.; Schmidt, M. W.; Sherrill, C. D.; Truhlar, D. G.; Warshel, A.; Xu,
X.; Aspuru-Guzik, A.; Baer, R.; Bell, A. T.; Besley, N. A.; Chai, J.-D.;
Dreuw, A.; Dunietz, B. D.; Furlani, T. R.; Gwaltney, S. R.; Hsu, C.-P.;
Jung, Y.; Kong, J.; Lambrecht, D. S.; Liang, W.; Ochsenfeld, C.;
Rassolov, V. A.; Slipchenko, L. V.; Subotnik, J. E.; Van Voorhis, T.;
Herbert, J. M.; Krylov, A. I.; Gill, P. M. W.; Head-Gordon, M.,
Advances in molecular quantum chemistry contained in the Q-Chem 4
program package. Mol. Phys. 2014, 113, 184-215.
43. McCullough, J. P.; Scott, D. W., Thermodynamic Properties,
Vibrational Assignment and Rotational Conformations of 2-Methyl-1-
butene. J. Am. Chem. Soc. 1959, 81, 1331-1334.
44. Hoffmann, R. W., Allylic 1,3-strain as a controlling factor in
stereoselective transformations. Chem. Rev. 1989, 89, 1841-1860.
45. Obligacion, J. V.; Chirik, P. J., Bis(imino)pyridine Cobalt-
Catalyzed Alkene Isomerization–Hydroboration:
Remote Hydrofunctionalization with Terminal Selectivity. J. Am.
Chem. Soc. 2013, 135, 19107-19110.
32. Zhang, Q.-W.; An, K.; Liu, L.-C.; Yue, Y.; He, W., Rhodium-
Catalyzed Enantioselective Intramolecular C H Silylation for the
Syntheses of Planar-Chiral Metallocene Siloles. Angew. Chem. Int. Ed.
2015, 54, 6918-6921.
A Strategy for
33. Zhang, Q.-W.; An, K.; Liu, L.-C.; Zhang, Q.; Guo, H.; He, W.,
Construction
of
Chiral
Tetraorganosilicons
by
Tandem
9
ACS Paragon Plus Environment