S. E. Webber et al. / Bioorg. Med. Chem. Lett. 11 (2001) 2683–2686
2685
the P2–P3 amide or ketomethylene unit of optimally
modified tripeptides with C-terminal Michael acceptors.
Depsipetide inhibitors may not be ideal therapeutic
candidates due to their lack of in vitro stability.
References and Notes
1. Couch, R. B. In Fields Virology; 3rd ed.; Field, B. N.,
Knipe, D. M., Howley, P. M., Eds.; Lippencott-Raven: Phila-
delphia, 1996; Vol. 1, Chapter 23, p 713.
2. Krausslich, H.-G.; Wimmer, E. Annu. Rev. Biochem. 1988,
57, 701.
3. (a) Orr, D. C.; Long, A. C.; Kay, J.; Dunn, B. M.;
Cameron, J. M. J. Gen. Virol. 1989, 70, 2931. (b) Cordingly,
M. G.; Register, R. B.; Callahan, P. L.; Garsky, V. M.;
Colonno, R. J. J. Virol. 1989, 63, 5037.
4. (a) Werner, G.; Rosenwirth, B.; Bauer, E.; Siefert, J.-M.;
Werner, F.-J.; Besemer, J. J. Virol. 1986, 57, 1084. (b)
Aschauer, B.; Werner, G.; McCray, J.; Rosenwirth, B.; Bach-
mayer, H. Virology 1991, 184, 587. (c) Skern, T.; Sommer-
gruber, W.; Blaas, D.; Fraundorfer, F.; Pieler, C.; Fogy, I.;
Kuechler, E. Nucleic Acids Res. 1985, 13, 2111.
5. Matthews, D. A.; Smith, W. W.; Ferre, R. A.; Condon, B.;
Budahazi, G.; Sisson, W.; Villafranca, J. E.; Janson, C. A.;
McElroy, H. E.; Gribskov, C. L.; Worland, S. Cell 1994, 77,
761.
6. Matthews, D. A.; Dragovich, P. S.; Webber, S. E.; Fuhr-
man, S. A.; Patick, A. K.; Zalman, L. S.; Hendrickson, T. F.;
Love, R. A.; Prins, T. J.; Marakovits, J. T.; Zhou, R.; Tikhe,
J.; Ford, C. E.; Meador, J. W.; Ferre, R. A.; Brown, E. L.;
Binford, S. L.; Brothers, M. A.; DeLisle, D. M.; Worland,
S. T. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 11000.
Scheme 2. Reagents and conditions: (DMB=2,4-dimethoxybenzyl)
(a) 1.3 M HCl/1,4-dioxane, satd K2CO3, 99%; (b) 5-methylisoxazole-
3-carbonyl chloride, pyr, CH2Cl2, 82%; (c) Pd(PPh3)4, morpholine/
THF, 95%; (d) HATU, (iPr)2NEt, DMF, 72%; (e) DDQ, CHCl3,
H2O, 50 ꢀC, 90%.
Table 4.
% Metabolism
Compd
ÀNADPH
+ NADPH
7
8
9
44
7
27
67
22
50
Incubation time=30 min; 25 mM compound; 1.0 mg/mL human liver
microsomes; 2.0 mM NADPH.
permeabilities similar to 6 and 9, respectively, and are
desolvated more readily than 5 and 8.9
7. (a) Dragovich, P. S.; Webber, S. E.; Babine, R. E.; Fuhr-
man, S. A.; Patick, A. K.; Matthews, D. A.; Lee, C. A.; Reich,
S. H.; Prins, T. J.; Marakovits, J. T.; Littlefield, E. S.; Zhou,
R.; Tikhe, J.; Ford, C. E.; Wallace, M. B.; Meador, J. W., III;
Ferre, R. A.; Brown, E. L.; Binford, S. L.; Harr, J. E. V.;
DeLisle, D. M.; Worland, S. T. J. Med. Chem. 1998, 41, 2806.
(b) Dragovich, P. S.; Webber, S. E.; Babine, R. E.; Fuhrman,
S. A.; Patick, A. K.; Matthews, D. A.; Reich, S. H.; Mar-
akovits, J. T.; Prins, T. J.; Zhou, R.; Tikhe, J.; Littlefield, E. S.;
Bleckman, T. M.; Wallace, M. B.; Little, T. L.; Ford, C. E.;
Meador, J. W., III; Ferre, R. A.; Brown, E. L.; Binford, S. L.;
DeLisle, D. M.; Worland, S. T. J. Med. Chem. 1998, 41, 2819.
(c) Kong, J.S.; Venkatraman, S.; Furness, K.; Nimkar, S.;
The HRV 3CP depsipeptide inhibitors 1, 4, and 7 were
synthesized from common intermediate 10, as outlined
in Schemes 1 and 2.13 Starting with l-4-F-Phe, (S)-
methyl-2-OH-3-(4-F-phenyl)propionate was prepared
according to the procedure of Hoffmann and Kim.14
The methyl ester was transformed to the more versatile
allyl ester without any loss of enantiomeric purity.
Intermediate 13 was generated via amide formation
with carboxylic acid 11 and the P1 amino-ester 127a
using HATU.15 Removal of the BOC group, followed
by N-terminus modification and deprotection of the S1
amide readily afforded products 1 and 4. In a similar
fashion inhibitor 7 was synthesized from carboxylic
acid 14 and the P1 amino-ester 15.10 The synthesis of
the peptidyl and ketomethylene 3CP inhibitors used
for comparative purposes were described pre-
viously.7a,7b,9,10,13
´
Shepherd, T. A.; Wang, Q. M.; Aube, J.; Hanzlik, R. P. J.
Med. Chem. 1998, 41, 2579.
8. Dragovich, P. S.; Webber, S. E.; Prins, T. J.; Zhou, R.;
Marakovits, J. T.; Tikhe, J. G.; Fuhrman, S. A.; Patick, A. K.;
Matthews, D. A.; Ford, C. E.; Brown, E. L.; Binford, S. L.;
Meador, J. W., III; Ferre, R. A.; Worland, S. T. Bioorg. Med.
Chem. Lett. 1999, 9, 2189.
9. Dragovich, P. S.; Prins, T. J.; Zhou, R.; Fuhrman, S. A.;
Patick, A. K.; Matthews, D. A.; Ford, C. E.; Meador, J. W.,
III; Ferre, R. A.; Worland, S. T. J. Med. Chem. 1999, 42,
1203.
10. Dragovich, P. S.; Prins, T. J.; Zhou, R.; Webber, S. E.;
Marakovits, J. T.; Fuhrman, S. A.; Patick, A. K.; Matthews,
D. A.; Lee, C. A.; Ford, C. E.; Burke, B. J.; Rejto, P. A.;
Hendrickson, T. F.; Tuntland, T.; Brown, E. L.; Meador,
J. W., III; Ferre, R. A.; Harr, J. E. V.; Kosa, M. B.; Worland,
S. T. J. Med. Chem. 1999, 42, 1213.
One possible drawback of depsipetide inhibitors may be
their potential to behave as better substrates for pro-
teolytic hydrolysis relative to their corresponding pep-
tides.16 Other than esterases, another concern is their
possible susceptibility toward hepatic metabolism. As
shown in Table 4, depsipeptide 7 was the least stable of
the three analogues when exposed to human liver micro-
somes either in the presence or absence of cofactor.17
11. Enzymatic and antiviral assays were performed as descri-
bed in ref 7a.
12. When comparing the inhibition data for depsipeptides 1,
4, and 7 directly to that of peptides 2, 5, and 8, it is unclear
why compound 1 is more potent than 2 as an HRV-14 3CP
In conclusion, we have prepared potent irreversible
HRV 3CP inhibitors where an ester is substituted for