F. Grillet et al. / Bioorg. Med. Chem. Lett. 18 (2008) 2143–2146
2145
Table 1. In vitro cytostatic activity against various cell lines
2. Wall, M. E.; Wani, M. C.; Cook, C. E.; Palmer, K. H.;
McPhail, A. T.; Sim, G. A. J. Am. Chem. Soc. 1966, 88,
3888.
Compound
DU145
a
Mia PaCa
a
HT29
a
IC50 (lM)
IC50 (lM)
IC50 (lM)
3. (a) Hsiang, Y. H.; Hertzberg, R.; Hetch, S. M.; Liu, L. F.
J. Biol. Chem. 1985, 260, 14873; (b) Kohn, K. W.;
Pommier, Y. Ann. N.Y. Acad. Sci. 2000, 922, 11; (c)
Staker, B. L.; Hjerrild, K.; Fesse, M. D.; Behnke, C. A.;
Burgin, A. B., Jr.; Stewart, L. Proc. Natl. Acad. Sci.
U.S.A. 2002, 99, 15387.
4. Kingsbury, W. D.; Boehm, J. C.; Jakas, D. R.; Holden, K.
G.; Hetch, S. M.; Gallagher, G.; Caranfa, M. J.; McCabe,
F. L.; Faucette, L. F.; Johnson, R. K.; Hertzbeg, R. P. J.
Med. Chem. 1991, 34, 98.
5. (a) Negoro, S.; Fukuoka, M.; Masuda, N.; Takada, M.;
Kusunoki, Y.; Matsui, K.; Takifuji, N.; Kudoh, S.;
Niitani, H.; Tagushi, T. J. Natl. Cancer Inst. 1991, 83,
1164; (b) Kawato, Y.; Aonuma, M.; Hirota, Y.; Kuga, H.;
Sato, K. Cancer Res. 1991, 51, 4187.
6. For compilations of derivatives that are in preclinical or
clinical trials, see (a) Butler, M. S. Nat. Prod. Rep. 2005,
22, 162; (b) Cragg, G. M.; Newman, D. J. J. Nat. Prod.
2004, 67, 232.
8
nab
na
1.01
1.70
1.99
na
na
na
na
na
na
na
na
na
na
na
na
na
0.012
14b
17a
17b
17c
17e
17f
17g
4
na
na
na
na
1.40
1.81
1.35
1.50
1.01
0.81
1.14
0.81
0.006
na
na
na
18b
18e
18g
SN-38
1.81
na
1.69
0.004
a Concentration necessary for 50% of cell growth inhibition after 96 h
of incubation.
b Not active at concentrations up to 2 lM.
7. Lin, L. Z.; Cordell, G. A. Phytochemistry 1989, 28, 1295.
8. (a) Ma, Z.; Lee, D. Y. W. Tetrahedron Lett. 2004, 45,
6721; (b) Xiao, X.; Antony, S.; Pommier, Y.; Cushman,
M. J. Med. Chem. 2006, 49, 1408; (c) Babjak, M.;
Kanazawa, A.; Anderson, R. J.; Greene, A. E. Org.
Biomol. Chem. 2006, 4, 407; (d) Zhou, H.-B.; Liu, G.-S.;
Yao, Z.-J. J. Org. Chem. 2007, 72, 6270.
9. (a) A solution of 0.62 mmol of compound 9, 0.62 mmol of
N-hydroxyphthalimide and 0.031 mmol of CuCl in 11 mL
of acetonitrile under O2 was stirred at 35 °C for 24 h. After
evaporation of the solvent under reduced pressure, the
residue was purified by silica gel column chromatography
to afford 6; For a review of NHPI-catalyzed aerobic
oxidation, see (b) Ishii, Y.; Sakaguchi, S.; Iwahama, T.
Adv. Synth. Catal. 2001, 343, 393.
for biological activity, while in the hydroxymethyl series,
the presence of these substituents showed negligible
influence.
In addition, topoisomerase I inhibitory activity assays
with the same derivatives17 were carried out using the
supercoiled DNA unwinding method.18 Only com-
pounds 8, 17g, and 18g revealed some inhibitory activ-
ity, but much lower than that of camptothecin (used
as the positive reference).
It should be pointed out that all of the tested com-
pounds have low solubility in DMSO. As the maximum
tested concentrations used in both biological studies
were limited by the final DMSO concentrations in the
assay mixtures (4% or 5%), in some cases the activity
could not be quantified.
10. Porter, H. K. Org. React. 1973, 20, 455.
11. (a) Compound 13a: mp 264.5–266.5 °C, lH NMR (CDC13)
d 3.14 (s, 6H), 4.06 (s, 3H), 5.29 (s, 2H), 7.13 (m, 2H), 7.54
(t, 1H, J = 7.7 Hz), 7.63 (d, 1H, J = 8.9 Hz), 8.10 (s, 1H),
8.27 (d, 1H, J = 7.4 Hz), 8.56 (s, 1H), 8.73 (d, 1H, J = 8.2
Hz), HRMS m/z calcd for C23H20N3O3 (MH+) 386.14992,
In summary we have used the flexibility of our synthetic
approach to prepare a variety of 22-hydroxyacumina-
tine analogs. We have also performed the first struc-
ture–activity relationship study of this cytotoxic
alkaloid. None of the tested compounds proved signifi-
cantly more active than the natural product 4.
1
found 386.15012; (b) Compound 13b: mp 277–279 °C, H
NMR (CDCl3) d 4.07 (s, 3H), 5.35 (s, 2H), 7.58 (t, 1H,
J = 7.5 Hz), 7.69 (d, 1H, J = 8.8 Hz), 7.83 (s, 1H), 8.13 (d,
1H, J = 8.8 Hz), 8.20 (s, 1H), 8.39 (d, 1H, J = 7.2 Hz), 8.69
(s, 1H), 8.73 (d, 1H, J = 7.8 Hz), HRMS m/z calcd for
C21H14N2O3CI (MH+) 377.06875, found 377.06892; (c)
Compound 13c: mp 267–268 °C, lH NMR (CDC13) d 4.06
(s, 3H), 5.30 (s, 2H), 6.17 (s, 2H), 7.12 (s, 1H), 7.51 (s, 1H),
7.56 (t, 1H, J = 7.9 Hz), 8.12 (s, 1H), 8.38 (d, 1H, J = 7.5
Hz), 8.63 (s, 1H), 8.76 (d, 1H, J = 7.3 Hz); (d) Compound
Acknowledgments
l
13d: mp 295–297 °C, H NMR (CDC13) d 4.03 (s, 3H),
We thank Professor P. Dumy for his interest in our
´
4.06 (s, 3H), 4.10 (s, 3H), 5.31 (s, 2H), 7.06 (s, 1H), 7.55
(m, 2H), 8.14 (s, 1H), 8.36 (m, 1H), 8.58 (s, 1H), 8.74 (d,
1H, J = 7.8 Hz), HRMS m/z calcd for C23H18N2O5Na
(MNa+) 425.11079, found 425.11154.
work. Financial support from the Universite Joseph
Fourier, the CNRS (UMR 5250, FR 2607), and the
French Ministry of Research (for F.G.) are gratefully
acknowledged.
12. Compound 14b: mp 297.5–299 °C, 1H NMR (CDCl3/
MeOD 4/1) d 5.13 (s, 2H), 5.38 (s, 2H), 7.58 (t, 1H, J = 7.6
Hz), 7.76 (m, 1H), 7.87 (d, 1H, J = 6.9 Hz), 7.92 (m, 1H),
7.97 (s, 1H), 8.13 (d, 1H, J = 9.1 Hz), 8.34 (s, 1H), 8.41 (d,
1H, J = 8.1 Hz), HRMS m/z calcd for C20H14N2O2Cl
(MH+) 349.07383, found 349.07390.
References and notes
1. For recent reviews on camptothecin and its derivatives, see
(a) Thomas, C. J.; Rahier, N. J.; Hetch, S. M. Bioorg.
Med. Chem. 2004, 12, 1585; (b) Pizzolato, J. F.; Saltz, L.
B. Lancet 2003, 361, 2235; (c) Du, W. Tetrahedron 2003,
59, 8649; (d) Lansiaux, A.; Bailly, C. Bull. Cancer 2003, 90,
239.
13. Sugasawa, T.; Adachi, M.; Sasakura, K.; Kitagawa, A. J.
Org. Chem. 1979, 44, 578.
14. (a) Compound 17a: mp 276–278.5 °C, 1H NMR (CDC13) d
2.73 (s, 3H), 3.98 (s, 3H), 4.05 (s, 3H), 5.31 (s, 2H), 7.45
(m, 2H), 7.56 (t, 1H, J = 7.7 Hz), 8.14 (d, 1H, J = 9.2 Hz),