Molecules 2021, 26, 4506
15 of 16
22. Lane, R.M.; Potkin, S.G.; Enz, A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol.
23. Rahman, F.U.; Bibi, M.; Altaf, A.A.; Tahir, M.N.; Ullah, F.; Zia Ur, R.; Khan, E. Zn, Cd and Hg complexes with unsymmetric
thiourea derivatives; syntheses, free radical scavenging and enzyme inhibition essay. J. Mol. Struct. 2020, 1211, 128096. [CrossRef]
24. Shade, C.W.; Hudson, R.J.M. Determination of MeHg in Environmental Sample Matrices Using Hg Thiourea Complex Ion
−
Chromatography with On-line Cold Vapor Generation and Atomic Fluorescence Spectrometric Detection. Environ. Sci. Technol.
25. An, F.-Q.; Wang, Y.; Xue, X.-Y.; Hu, T.-P.; Gao, J.-F.; Gao, B.-J. Design and application of thiourea modified D301 resin for the
effective removal of toxic heavy metal ions. Chem. Eng. Res. Des. 2018, 130, 78–86. [CrossRef]
26. Rahman, M.M.; Ahmed, J.; Asiri, A.M. Thiourea sensor development based on hydrothermally prepared CMO nanoparticles for
environmental safety. Biosens. Bioelectron. 2018, 99, 586–592. [CrossRef]
27. El-Korashy, S.A.; Elwakeel, K.Z.; El-Hafeiz, A.A. Fabrication of bentonite/thiourea-formaldehyde composite material for Pb(II),
Mn(VII) and Cr(VI) sorption: A combined basic study and industrial application. J. Clean. Prod. 2016, 137, 40–50. [CrossRef]
28. Loto, C.; Loto, R.; Popoola, A. Corrosion inhibition of thiourea and thiadiazole derivatives: A review. J. Mater. Environ. Sci. 2012
3, 885–894.
,
29. El-Liethy, M.A.; Elwakeel, K.Z.; Ahmed, M.S. Comparison study of Ag(I) and Au(III) loaded on magnetic thiourea-formaldehyde
as disinfectants for water pathogenic microorganism’s deactivation. J. Environ. Chem. Eng. 2018, 6, 4380–4390. [CrossRef]
30. Yusof, M.S.M.; Jusoh, R.t.H.; Khairul, W.M.; Yamin, B.M. Synthesis and characterisation a series of N-(3,4-dichlorophenyl)-N -(2,3
0
and 4-methylbenzoyl)thiourea derivatives. J. Mol. Struct. 2010, 975, 280–284. [CrossRef]
31. Saxe, S.R.; Wekstein, M.W.; Kryscio, R.J.; Henry, R.G.; Cornett, C.R.; Snowdon, D.A.; Grant, F.T.; Schmitt, F.A.; Donegan, S.J.;
Wekstein, D.R.; et al. Alzheimer’s disease, dental amalgam and mercury. J. Am. Dent. Assoc. 1999, 130, 191–199. [CrossRef]
32. Bakulski, K.M.; Seo, Y.A.; Hickman, R.C.; Brandt, D.; Vadari, H.S.; Hu, H.; KyunPark, S. Heavy metals exposure and Alzheimer’s
disease and related dementias. J. Alzheimer’s Dis. 2020, 76, 1215–1242. [CrossRef] [PubMed]
33. Wang, X.; Yang, C.; Yan, M.; Ge, S.; Yu, J. A novel fluorescence probe based on p-acid-Br and its application in thiourea detection.
RSC Adv. 2016, 6, 45001–45008. [CrossRef]
34. Kumar, V.; Kaushik, M.P.; Srivastava, A.K.; Pratap, A.; Thiruvenkatam, V.; Row, T.N.G. Thiourea based novel chromogenic sensor
for selective detection of fluoride and cyanide anions in organic and aqueous media. Anal. Chim. Acta 2010, 663, 77–84. [CrossRef]
35. Ngah, F.A.A.; Zakariah, E.I.; Hassan, N.I.; Yamin, B.; Sapari, S.; Hasbullah, S.A. Synthesis of thiourea derivatives and binding
behavior towards the mercury ion. Malays. J. Anal. Sci. 2017, 21, 1226–1234.
36. Mishra, J.; Kaur, H.; Ganguli, A.K.; Kaur, N. Fluorescent chemosensor based on urea/thiourea moiety for sensing of Hg (II)
ions in an aqueous medium with high sensitivity and selectivity: A comparative account on effect of molecular architecture on
chemosensing. J. Mol. Struct. 2018, 1161, 34–43. [CrossRef]
37. Gan, S.-F.; Wan, J.-P.; Pan, Y.-J.; Sun, C.-R. Highly efficient and catalyst-free synthesis of substituted thioureas in water. Mol.
38. Shetty, P. Corrosion inhibition behaviour of thiourea derivatives in acid media against mild steel deterioration: An overview. Surf.
Eng. Appl. Electrochem. 2017, 53, 587–591. [CrossRef]
39. Owen, J.S.; Hendricks, M.P.; Campos, M.P.; Cleveland, G.T.; Jen-La PLANTE, I.; Hamachi, L.S. Methods of Producing Metal
Sulfides, Metal Selenides, and Metal Sulfides/Selenides Having Controlled Architectures Using Kinetic Control. U.S. Patent
10,767,112, 8 September 2020.
40. Wang, R.; Yang, W.-j.; Yue, L.; Pan, W.; Zeng, H.-y. DDQ-Promoted C–S Bond Formation: Synthesis of 2-Aminobenzothiazole
Derivatives under Transition-Metal-, Ligand-, and Base-Free Conditions. Synlett 2012, 23, 1643–1648. [CrossRef]
41. Mital, A.; Murugesan, D.; Kaiser, M.; Yeates, C.; Gilbert, I.H. Discovery and optimisation studies of antimalarial phenotypic hits.
Eur. J. Med. Chem. 2015, 103, 530–538. [CrossRef]
42. Štrukil, V. Mechanochemical synthesis of thioureas, ureas and guanidines. Beilstein J. Org. Chem. 2017, 13, 1828–1849. [CrossRef]
43. Altaf, A.A.; Shahzad, A.; Gul, Z.; Khan, S.A.; Badshah, A.; Tahir, M.N.; Zafar, Z.I.; Khan, E. Synthesis, crystal structure, and DFT
calculations of 1, 3-diisobutyl thiourea. J. Chem. 2015, 2015, 913435. [CrossRef]
44. Haribabu, J.; Subhashree, G.R.; Saranya, S.; Gomathi, K.; Karvembu, R.; Gayathri, D. Synthesis, crystal structure, and in vitro and
in silico molecular docking of novel acyl thiourea derivatives. J. Mol. Struct. 2015, 1094, 281–291. [CrossRef]
45. Saeed, A.; Zaib, S.; Ashraf, S.; Iftikhar, J.; Muddassar, M.; Zhang, K.Y.; Iqbal, J. Synthesis, cholinesterase inhibition and molecular
modelling studies of coumarin linked thiourea derivatives. Bioorganic Chem. 2015, 63, 58–63. [CrossRef] [PubMed]
46. Czaplin´ska, B.; Malarz, K.; Mrozek-Wilczkiewicz, A.; Slodek, A.; Korzec, M.; Musiol, R. Theoretical and Experimental Investiga-
tions of Large Stokes Shift Fluorophores Based on a Quinoline Scaffold. Molecules 2020, 25, 2488. [CrossRef] [PubMed]
47. Yang, G.; Li, S.; Wang, S.; Hu, R.; Feng, J.; Li, Y.; Qian, Y. Novel fluorescent probes based on intramolecular charge-and
proton-transfer compounds. Pure Appl. Chem. 2013, 85, 1465–1478. [CrossRef]
48. Khan, U.A.; Badshah, A.; Tahir, M.N.; Khan, E. Gold (I), silver (I) and copper (I) complexes of 2, 4, 6-trimethylphenyl-3-
benzoylthiourea; synthesis and biological applications. Polyhedron 2020, 181, 114485. [CrossRef]