4534
Organometallics 1999, 18, 4534-4537
2,2,4,4,6,6-Hexa ben zylcyclotr ista n n a tellu r a n e,
(Bn 2Sn Te)3. Syn th esis a n d Str u ctu r a l Ch a r a cter iza tion of
a n Or ga n om eta llic Sin gle-Sou r ce P r ecu r sor to
P h a se-P u r e, P olycr ysta llin e Sn Te
Philip Boudjouk,* Michael P. Remington, J r., Dean G. Grier,
Wayne Triebold, and Bryan R. J arabek
Center for Main Group Chemistry, Department of Chemistry, North Dakota State University,
Fargo, North Dakota 58105
Received J uly 1, 1999
The title compound, (Bn2SnTe)3, Bn ) CH2C6H5, was prepared in high yield by treating
Bn2SnCl2 with (NH4)2Te. Details of the synthesis and characterization (1H, 13C, 119Sn, and
125Te NMR; IR, single-crystal XRD, and elemental analyses) are presented. (Bn2SnTe)3 serves
as an efficient single-source precursor to phase-pure cubic SnTe under mild conditions
In tr od u ction
14-16 material in high yields and high purity by
homolytic bond cleavage of the C-Sn bond.10a This route
has the advantages of utilizing mild decomposition
temperatures, producing an inert and easily removed
organic byproduct, 1,2-diphenylethane, and controlling
the stoichiometry of the end members as well as the
corresponding solid solutions, SnSxSe1-x. Easy access to
solid solutions allows tailoring of the band gap.11
Furthering our investigation of molecular precursors
to 14-16 materials, we report here the synthesis, char-
acterization, and decomposition of the novel six-mem-
bered ring containing alternating Sn and Te atoms,
(Bn2SnTe)3. This compound serves as an organometallic
single-source precursor to cubic SnTe under mild ther-
mal conditions (g200 °C). Homolytic bond cleavage of
the Sn-C bond and the formation of 1,2-diphenylethane
is the dominant mechanism.
Tin telluride and other tin chalcogenides are widely
used as semiconductors.1 For example, SnTe, with a
direct Eg of 0.18 eV,2 has found application in infrared
detection, radiation receiving, and thermoelectric de-
vices.3 Interest in the structure and bonding of 14-16
materials has also driven research in this area.4 Syn-
thetic routes to these materials include heating mix-
tures of the elements at high temperatures for extended
time periods,5 reaction of the elements in liquid am-
monia,6 precipitation from aqueous solutions,7 organo-
metallic chemical vapor deposition (OMCVD),8 solid-
state metathesis,9 and, more recently, pyrolysis of
organometallic single-source precursors.10
We have demonstrated that ring systems of the type
(Bn2SnE)3, (Bn ) CH2C6H5, E ) S or Se) provide the
(1) Berger, L. I. Semiconductor Materials; CRC Press: New York,
1997.
Resu lts a n d Discu ssion
(2) (a) Fouad, S. S.; Morsy, A. Y.; Soliman, H. S.; Ganainy, G. A. J .
Mater. Sci. Lett. 1994, 13, 82. (b) Rogers, L. M. Br. J . Appl. Phys. 1968,
1, 845. (c) Esaki, L.; Stiles, P. J . Phys. Rev. Lett. 1966, 16, 1108.
(3) (a) George, J .; Palson, T. I. Thin Solid Films 1985, 127, 233,
and references therein. (b) Santhanam, S.; Chaudhuri, A. K. Phys.
Status Solidi A 1984, 83, k77. (c) Reynolds, R. A. J . Electrochem. Soc.
1967, 114, 526. (d) Brebrick, R. F.; Strauss, A. J . Phys. Rev. 1963, 131,
104.
(4) (a) Lin, J .-C.; Ngai, T. L.; Chang, Y. A. Metall. Trans. A 1986,
17A, 1241. (b) Rabe, K. M.; J oannopoulos, J . D. Phys. Rev. B 1985, 32,
2302. (c) Miller, A. J .; Saunders, G. A.; Yogurtc¸u, Y. K. J . Phys. C:
Solid State Phys. 1981, 14, 1569. (d) Littlewood, P. B. J . Phys. C: Solid
State Phys. 1980, 13, 4855.
P r ecu r sor Syn th esis. Cyclic tin chalcogenides can
be prepared by the reaction of a dialkyldihalostannane,
R2SnX2, with alkali metal chalcogenolates, MEH,12 or
by treating elemental chalcogens with dialkylstan-
nanes.13 Recently we reported that these compounds are
accessible in good to excellent yields from R2SnX2 and
freshly prepared anhydrous alkali metal chalcogenides,
M2E10a,c (eq 1).
(5) (a) Greenwood, N. N., Earnshaw, A., Eds.; Chemistry of the
Elements; Permagon: New York, 1990. (b) Blitz, W.; Mecklenburg, W.
Z. Anorg. Allg. Chem. 1909, 64, 226. (c) Abrikosov, N. K.; Bankina, V.
F.; Poretskaya, L. V.; Shelimova, L. E. Semiconducting II-VI, IV-VI,
and V-VI Compounds; Plenum: New York, 1969. (d) Yellin, N.; Ben-
Dor, L. Mater. Res. Bull. 1983, 18, 823.
(6) Henshaw, G.; Parkin, I. P.; Shaw, G. A. J . Chem. Soc., Dalton
Trans. 1997, 231.
(7) Gorer, S.; Albu-Yaron, A.; Hodes, G. Chem. Mater. 1995, 7, 1243.
(8) Manasevit, H. M.; Simpson, W. I. J . Electrochem. Soc. 1975, 122,
444.
Na2E f 1/3(R2SnE)3
R ) Ph, Bn; E ) S, Se
R2SnX2 +
+ 2 NaX (1)
Attempts to produce the tellurium analogue, with R
) Bn, in our laboratory by eq 1 failed. Typically,
tellurium powder was the major product. However,
when we use ammonium telluride, prepared as in eq
(9) Parkin, I. P.; Rowley, A. T. Polyhedron 1993, 12, 2961.
(10) (a) Boudjouk, P.; Seidler, D. J .; Grier, D.; McCarthy, G. J . Chem.
Mater. 1996, 8, 1189. (b) Boudjouk, P.; Seidler, D. J .; Bahr, S. R.;
McCarthy, G. J . Chem. Mater. 1994, 6, 2108. (c) Boudjouk, P.; Bahr,
S. R.; McCarthy, G. J . Chem. Mater. 1992, 4, 383. (d) Seligson, A. L.;
Arnold, J . J . Am. Chem. Soc. 1993, 115, 8214. (e) Cowley, A. H.; J ones,
R. A. Angew. Chem., Int. Ed. Engl. 1989, 28, 1208.
(11) Pierson, H. O. Handbook of Chemical Vapor Deposition (CVD):
Principles, Technology and Applications; Noyes Publications: Park
Ridge, NJ , 1992.
(12) Blecher, A.; Dra¨ger, M. Angew. Chem., Int. Ed. Engl. 1979, 18,
677.
(13) Blecher, A.; Mathiasch, B. Z. Naturforsch. B 1978, 33, 246.
10.1021/om990506u CCC: $18.00 © 1999 American Chemical Society
Publication on Web 09/30/1999