Williams et al.
129
14.2. HR-MS m/e calcd. for C46H59O5Si ([M – t-Bu]+):
747.3901; found: 747.3909.
(101 MHz, CDCl3) δ: 166.2, 149.9, 144.8, 133.0, 130.2,
129.6, 128.3, 127.5, 127.4, 113.7, 77.7, 71.8, 69.5, 67.9,
57.9, 56.2, 48.5, 40.5, 37.6, 32.4, 29.0, 27.4, 25.9, 18.1,
18.0, 13.6, 12.5, 9.6, –4.4, –4.5. HR-MS (FAB, NBA, Na+)
m/z calcd. for C52H94O6Si2Sn120Na ([M + Na]+): 1013.5509;
found: 1013.5549. Anal. calcd. for C52H94O6Si2Sn (%): C
63.08, H 9.57; found: C 62.93, H 9.42.
2,2-Dimethylpropionic acid (4R,5S,8R)-(E)-4,10-bis-(tert-
butyldiphenylsilanyloxy)-5-hydroxy-2,8-dimethyl-7-
methylene-dec-2-enyl ester (47)
Application of the allylation procedure above led to the
isolation of 47 (entry 12, Table 1) as the major adduct,
which was characterized as follows: Rf = 0.68 in 33%
EtOAc–hexanes. IR (neat) (cm–1): 3513, 3071, 3047, 2959,
2930, 2857, 1731, 1427, 1282, 1149, 1112. 1H NMR
(400 MHz, CDCl3) δ: 7.70–7.60 (m, 8H), 7.45–7.34 (m,
12H), 5.52 (d, J = 9.2 Hz, 1H), 4.74 (s, 1H), 4.66 (s, 1H),
4.32 (dd, J = 4.0, 9.6 Hz, 1H), 4.26 (s, 2H), 3.8 (m, 1H),
3.70–3.60 (m, 2H), 2.28 (br s, 1H), 2.28–2.10 (m, 2H), 2.02
(dd, J = 8.8, 15.2 Hz, 1H), 1.74–1.66 (m, 1H), 1.52–1.43 (m,
1H), 1.17 (s, 9H), 1.05–1.02 (m, 21 H), 0.90 (d, J = 6.8 Hz,
3H). 13C NMR (101 MHz, CDCl3) δ: 178.0, 151.1, 135.9,
135.9, 135.5, 133.4, 134.0, 133.4, 129.7, 129.6, 129.5,
127.6, 127.6, 127.4, 126.8, 73.6, 73.5, 68.5, 62.1, 38.8, 38.1,
37.3, 35.5, 27.2, 27.0, 26.9, 20.0, 19.4, 19.2, 14.1. HR-MS
m/e calcd. for C46H59O5Si ([M – t-Bu]+): 747.3901; found:
747.3897.
(4R,5S,6R,7S,10R,13S)-10-Benzoyloxy-13-(tert-butyldi-
methylsiloxy)-5,6-epoxy-9-methylene-2-tributylstannyl-4-
triisopropylsiloxy-heptadeca-1,15-(E)-dien-7-ol (50)
The allylation procedure above led to the isolation of 50
(entry 15, Table 1) as a single diastereoisomer, characterized
as follows: Rf = 0.15 in 5% EtOAc–hexanes. [α]D –25.5 (c
2.25, CHCl3). IR (neat) (cm–1): 3483 (br), 2928, 2666, 1720,
1
1462, 1271, 1113. H NMR (400 MHz, CDCl3) δ: 8.03 (m,
2H), 7.56 (m, 1H), 7.44 (m, 2H), 5.81 (m, 1H), 5.41 (m,
1H), 5.34 (dd, J = 7.8, 4.9 Hz, 1H), 5.25 (d, J = 2.7 Hz, 1H),
5.17 (s, 1H), 5.05 (s, 1H), 3.86 (m, 1H), 3.75–3.66 (m, 2H),
3.01 (dd, J = 3.9, 2.1 Hz, 1H), 2.94 (dd, J = 3.9, 2.1 Hz,
1H), 2.89 (d, J = 1.7 Hz, 1H), 2.59 (m, 2H), 2.39 (dd, J =
14.5, 2.2 Hz, 1H), 2.16–2.10 (m, 3H), 1.89 (m, 1H), 1.75
(m, 1H), 1.63 (d, J = 5.3 Hz, 3H), 1.61 (m, 1H), 1.52–1.40
(m, 7H), 1.31 (m, 6H), 1.12–1.02 (m, 21H), 0.98–0.84 (m,
2H), 0.04 (s, 3H), 0.03 (s, 3H). 13C NMR (101 MHz,
CDCl3) δ: 166.2, 149.8, 144.9, 133.0, 130.2, 129.6, 129.1,
128.3, 127.4, 127.3, 113.6, 77.8, 71.9, 71.7, 70.0, 59.4, 58.8,
47.3, 40.4, 37.1, 32.5, 29.1, 27.4, 25.9, 18.2, 17.9, 13.7,
12.6, 9.6, –4.4, –4.6.
2,2-Dimethylpropionic acid (4R,5R,8S)-(E)-4-(tert-
butyldiphenylsilanyloxy)-5-hydroxy-10-([1,3]dithian-2-
yl)-2,8-dimethyl-7-methylene-dec-2-enyl ester (48)
The same procedure for allylation was applied here and
led to the isolation of 48 (entry 13, Table 1): Rf = 0.59 in
33% EtOAc–hexanes. IR (neat) (cm–1): 3551, 3071, 2952,
2929, 2852, 1728, 1432, 1275, 1145, 1110. 1H NMR
(400 MHz, CDCl3) δ: 7.69–7.62 (m, 4H), 7.43–7.32 (m, 6H),
5.39 (d, J = 9.6 Hz, 1H), 4.85 (s, 1H), 4.84 (s, 1H), 4.29 (dd,
J = 6.2, 9.4 Hz, 1H), 4.16 (s, 2H), 4.00 (t, J = 6.8 Hz, 1H),
3.67 (m, 1H), 2.90–2.76 (m. 4H), 2.53 (d, J = 4 Hz, 1H),
2.21–2.05 (m, 3H), 1.95 (dd, J = 9.6, 15.2 Hz, 1H), 1.90–
1.80 (m, 1H), 1.76–1.60 (m, 2H), 1.55–1.46 (m, 1H), 1.16
(s, 9H), 1.07 (s, 3H), 1.05 (s, 9H), 0.98 (d, J = 6.8 Hz, 3H).
13C NMR (101 MHz, CDCl3) δ: 178.0, 150.5, 136.0, 136.0,
135.9, 134.1, 133.7, 133.5, 129.8, 129.7, 127.7, 127.4,
126.7, 73.8, 73.4, 68.5, 47.8, 39.2, 38.8, 37.0, 33.2, 32.1,
30.4, 27.1, 27.0, 26.0, 20.0, 19.4, 14.1. HR-MS m/e calcd.
for C34H47O4S2Si ([M – t-Bu]+): 611.2685; found: 611.2690.
(4S,5S,6R,7S,10R,13S)-10-Benzoyloxy-13-(tert-butyldi-
methylsiloxy)-5,6-epoxy-9-methylene-2-tributylstannyl-4-
triisopropylsiloxy-heptadeca-1,15-(E)-dien-7-ol (51)
The allylation procedure above led to the isolation of 51
(entry 16, Table 1) as a single diastereoisomer, characterized
as follows: Rf = 0.20 in 5% EtOAc–hexanes. [α]D –11.2 (c
1.35, CHCl3). IR (neat) (cm–1): 3475 (br), 2955, 2928, 2866,
1722, 1462, 1271, 1116. 1H NMR (400 MHz, CDCl3) δ: 8.04
(m, 2H), 7.57 (m, 1H), 7.44 (m, 2H), 5.81 (s, 1H), 5.42 (m,
2H), 5.35 (m, 1H), 5.24 (d, J = 2.2 Hz, 1H), 5.18 (s, 1H),
5.06 (s, 1H), 4.12 (m, 1H), 3.90 (m, 1H), 3.69 (dddd, J =
5.9, 5.9, 5.7, 5.3 Hz, 1H), 3.15 (dd, J = 4.0, 2.1 Hz, 1H),
3.05 (dd, J = 2.4, 2.2 Hz, 1H), 2.87 (d, J = 1.9 Hz, 1H), 2.71
(dd, J = 13.8, 4.3 Hz, 1H), 2.46 (dd, J = 19.0, 9.8 Hz, 1H),
2.44 (dd, J = 14.2, 3.1 Hz, 1H), 2.18 (dd, J = 14.2, 9.5 Hz,
1H), 2.14 (dd, J = 5.7, 5.7 Hz, 2H), 1.90 (m, 1H), 1.76 (m,
1H), 1.63 (d, J = 5.2 Hz, 3H), 1.61 (m, 1H), 1.50 (m, 7H),
1.30 (m, 6H), 1.24 (m, 21H), 0.90 (m, 24H), 0.30 (s, 6H).
13C NMR (101 MHz, CDCl3) δ: 166.2, 149.9, 144.8, 133.0,
130.2, 129.6, 128.3, 127.4, 127.3, 113.7, 77.7, 77.2, 71.9,
69.5, 67.9, 57.9, 56.2, 48.5, 40.4, 37.5, 32.4, 29.0, 27.4,
25.8, 18.0, 17.9, 13.6, 12.5, 9.6, –4.4, –4.5. MS (FAB, NBA,
Na+) m/z ([M – t-Bu]+): 933.
(4R,5R,6S,7R,10S,13S)-10-Benzoyloxy-13-(tert-butyl-
dimethylsiloxy)-5,6-epoxy-9-methylene-2-tributylstannyl-
4-triisopropylsiloxy-heptadeca-1,15-(E)-dien-7-ol (49)
The allylation procedure above led to the isolation of 49
(entry 14, Table 1) as a single diastereoisomer, characterized
as follows: Rf = 0.20 in 5% EtOAc–hexanes. [α]D +6.69 (c
1.44, CHCl3). IR (neat) (cm–1): 3489 (br), 2955, 2928, 2854,
1
1720, 1462, 1271, 1113, 1068. H NMR (400 MHz, CDCl3)
δ: 8.04 (d, J = 7.2 Hz, 2H), 7.57 (m, 1H), 7.44 (m, 2H), 5.81
(s, 1H), 5.50–5.30 (m, 3H), 5.23 (d, J = 2.2 Hz, 1H), 5.18 (s,
1H), 5.06 (s, 1H), 4.12 (m, 1H), 3.90 (m, 1H), 3.69 (dddd,
J = 5.9, 5.9, 5.7, 5.3 Hz, 1H), 3.15 (dd, J = 4.0, 2.0 Hz, 1H),
3.05 (dd, J = 2.2, 2.1 Hz, 1H), 2.85 (d, J = 2.0 Hz, 1H), 2.71
(dd, J = 13.7, 4.2 Hz, 1H), 2.50–2.40 (m, 2H), 2.18 (dd, J =
14.2, 9.4 Hz, 1H), 2.14 (m, 2H), 1.84 (m, 2H), 1.62 (d, J =
5.9 Hz, 3H), 1.59–1.44 (m, 8H), 1.32 (m, 6H), 1.06 (m,
21H), 0.94–0.86 (m, 24H), 0.04 (s, 6H). 13C NMR
Conclusion
In summary, a powerfully convergent strategy for the
diastereoselective synthesis of homoallylic alcohols has been
described. Our asymmetric allylation reaction incorporates
three elements of stereodifferentiation. Optimal results are
provided when adjacent asymmetry in the starting stannane
© 2004 NRC Canada