Precursors of Pentatetraenones
671
C 8a0, C 9a0, C 10a0; 137 14, 137 077, ethenyl =CH–; 126 67,
126 61, 126 54, 126 44, 126 23, 126 14, 125 50, 125 36,
125 07, 123 99, 123 81, 123 73, 123 60, 123 44, 123 32, C 10–
80; 116 67, 116 54, =CH2; 110 58, 110 22, C 110; 97 19, 97 11,
C 2; 50 36, 50 30, 50 09, 49 88, 49 50, 49 28, 49 21, C 90,
C 100; 47 23, 47 04, C 120. Mass spectrum, m/z 320 (0 5%),
318 (M, 1 5), 178 (100).
C 120. Mass spectrum, m/z 301 (M, 1 5%), 300 (1 3), 178
(100).
Mixture of E- and Z-Isomers of 3-(12 0-Ethenyl-9 0,10 0-
dihydro-9 0,10 0-ethanoanthracen-11 0-ylidene)[1-13C]prop-
2-enoyl Chloride (27)
The title acid chloride (27) was prepared as previously
described and obtained as
a yellow oil (Found: m/z,
Mixture of E- and Z-Isomers of 3-(12 0-Ethenyl-9 0,10 0-
dihydro-9 0,10 0-ethanoanthracen-11 0-ylidene)[1-13C]prop-
2-enoic Acid
Methyl (triphenylphosphoranylidene)[1-13C]ethanoate (1 5
g, 4 0 mmol, 50 atom % 13C) was allowed to react with
the acid chloride (22) (530 mg, 2 0 mmol) under the condi-
tions described for the unlabelled reagent and the products
were separated. Methyl 3-(120-ethenyl-90,100-dihydro-90,100-
ethanoanthracen-110-ylidene)[1-13C]prop-2-enoate was obtained
319 085 0 003. C2013CH1535ClO requires m/z, 319 085).
1
1961 (C=C=C), 1838, 1777 (C=O), 1738 cm
max
1H n.m.r.
(
13C=O).
(200 MHz, CDCl3) 7 43–7 29, m, 7 24–7 08,
m, H 10–80; 5 89–5 82, ethenyl =CH–; 5 35–4 95, m, ethenyl
=CH2, H 2, H 100; 4 35, apparent t, J 2 1 Hz, H 90; 3 55–
3 40, m, H 120. 13C n.m.r.
(50 MHz, CDCl3) 200 99,
C 3; 165 83, 165 61 (intense), C=O; 143 28, 143 03, 140 49,
140 23, 139 35, C 4a0, C 8a0, C 9a0, C 10a0; 137 43, 137 35,
ethenyl =CH–; 127 31, 126 95, 126 89, 126 82, 126 72,
126 51, 126 27, 125 78, 125 63, 125 52, 125 34, 125 20,
124 27, 124 01, 123 87, 123 72, 123 04, 122 54, C 10–80;
116 94, 116 81, ethenyl =CH2; 98 15, 97 46, 97 39, 96 58,
C 2; 50 64, 50 58, 50 37, 49 78, 49 55, C 90, C 100; 47 55,
46 79, C 120. Mass spectrum, m/z 319 (M, 5%), 318 (4), 276
(50), 241 (70), 240 (35), 239 (50), 178 (100).
as a yellow oil (57 mg, 12%).
1
1963 (C=C=C), 1717
max
(C=O), 1673 cm
(
13C=O). 1H n.m.r. (200 MHz, CDCl3)
7 36–7 32, m, 7 18–7 05, m, H 10–80; 5 64–5 58, m, ethenyl
=CH–; 5 45–4 89, m, =CH2, H 2; 4 88, s, H 100; 4 28, d,
J 2 3 Hz, H 90; 3 62, 3 59, 2t (intensity c. 1 : 1), 2 OCH3;
3 46–3 76, m, H 120. 13C n.m.r. (50 MHz, CDCl3) 210 76,
210 39, C 3; 166 55, 166 29 (intense), C=O; 143 33, 143 26,
140 99, 140 79, 140 73, 140 53, 140 45, C 4a0, C 8a0, C 9a0,
C 10a0; 138 09, 137 85, ethenyl =CH–; 126 76, 126 69, 126 65,
126 55, 126 38, 126 31, 125 70, 125 56, 124 17, 123 94,
123 85, 123 80, 123 73, 123 49, C 10–80; 116 32, ethenyl
=CH2; 108 622 ( anked by d, J 2 6 Hz), 107 69 ( anked by
d, J 2 6 Hz), C 110; 90 52 ( anked by d, J 40 Hz), 90 25
( anked by d, J 40 Hz), C 2; 51 98, 51 95, 51 89, 50 70,
50 49, C 90, C 100; 49 85, 49 75, 49 30, 48 82, C 120. Mass
spectrum, m/z 315 (M, 4%), 314 (3), 255 (50), 178 (100).
Methyl 3-(12 0-ethenyl-9 0,10 0-dihydro-9 0 ,10 0 -ethanoanthra-
cen-11 0-yl)-3-oxo-2-triphenylphosphoranylidene[1-13C]propa-
noate was obtained as colourless crystals (700 mg, 60%),
Pyrolysis of Acid Chlorides (26) and (27)
The deposition line was evacuated and the furnace heated
to 400 for 16 h. The requisite acid chloride (20 mg, 0 06
mmol) was introduced into the line in a glass vial and the
system was evacuated to 0 04 mmHg, the furnace heated to
the required temperature and the CsI plate cooled to c. 10
K. The precursor was sublimed at 60–180 in a ow of argon
(0 07 mmHg) and pyrolysed and deposited during 1 h. The
infrared spectrum was recorded (4000–650 cm 1, 0 5 cm
resolution).
Precursor (26) (650 /0 02 mmHg).
3635 8s, 3545 2s, 2852 4m, 2347 5s (CO2), 2327 3, 2281 9w,
2188 2w, 2138 7m (CO), 2104 3s(br), 2092 2m(br), 1764 2w,
1
3724 1s, 3698 8s,
max
m.p. 114–116 (Found: m/z, 593 221 0 006. C3913CH33O3P
1
requires m/z, 593 218).
(
1663 (C=O), 1623 cm
1620 8m, 1602 3s, 1110 0w, 1038 0w, 883 4m, 731 8s, 662 2s
max
1
13C=O). 1H n.m.r. (200 MHz, CDCl3) 7 60–7 31, 3 phenyl
cm
.
CH; 7 25–6 93, H 10–80; 5 39–5 25, ethenyl =CH–; 4 90–4 77,
ethenyl =CH2, H 100; 4 06, d, J 2 0 Hz, H 90; 3 65, dd, J
5 6, 2 0 Hz, H 110; 3 26, apparent t, OCH3; 3 23–3 16, m,
H 120. 13C n.m.r. (50 MHz, CDCl3) 194 21, 194 16, 194 11,
194 06, C 3=O; 167 64, 167 33 (intense), C 1=O; 147 75,
145 05, 144 66, 144 38, 144 28, 142 00, 141 28, 140 14,
139 87, C 4a0, C 8a0, C 9a0, C 10a0; 142 31, ethenyl =CH–;
133 06, 132 86, 131 22, 131 16, 128 17, 127 92, phenyl CH;
127 50, 125 64, phenyl quat.; 125 61, 125 48, 125 33, 124 95,
124 82, 124 65, 124 53, 124 42, 122 99, 122 87, 122 61, C 10–
80; 113 61, ethenyl =CH2; 54 20, 54 07, OCH3; 50 11, 49 59,
C 110; 49 19, 48 30, 45 99, C 90, C 100; 44 38, 44 35, C 120.
Mass spectrum, m/z 593 (M, 7%), 362 (32), 361 (25), 262
(73), 183 (38), 178 (100).
The same procedure was used for precursor (27) except that
after measurement of the infrared spectrum, the CsI plate was
warmed to room temperature and the products were analysed
by gas chromatography–mass spectrometry.
Precursor (27) (550 /0 02 mmHg).
2963 4m, 2887 9s,
max
2868 6s, 2963 1, 2853 4s, 2814 9s, 2785 5s, 2756 3s, 2345 0s
(CO2), 2340 2s (CO2), 2279 5s (13CO2), 2275 6s (13CO2),
2154 3w, 2138 5s (CO), 1779 5s, 1701 6s, 1506 6m, 1478 1m,
1455 3m, 1385 7m, 1336 7m, 1318 0m, 1262 3m, 1080 3s,
1
1067 1s, 1049 9s, 755 7s cm
. G.c.–m.s.: product A (tR
11 90 min), m/z 178 (M, 100%), 176 (20), 152 (10); product
B (tR 16 08 min), m/z 254 (M, 75%), 253 (100), 252 (40),
250 (20), 126 (14), 113 (20).
At 650 /0 02 mmHg.
2962 9w, 2927 8w, 2888 0m,
max
The ester (23) (40 mg, 0 13 mmol, 50 atom % 13C) was
hydrolysed as previously described and the title acid was
obtained as yellow crystals (25 mg, 64%, 50 atom % 13C),
2869 4s, 2963 4s, 2815 0s, 2785 9s, 2345 1s (CO2), 2339 1s
(CO2), 2279 6s (13CO2), 2273 7s (13CO2), 2154 2m, 2138 5s
(CO), 2106 6m, 2091 3s (13CO), 1256 7m, 1095 6w, 883 7m,
783 2m, 726 1m cm 1. G.c.–m.s.: product A (tR 11 89 min),
m/z 178 (M, 100%), 177 (20), 176 (55), 152 (24), 151 (22),
150 (20), 89 (55), 88 (30), 76 (40); product B (tR 16 07 min),
254 (M, 70%), 253 (100), 252 (40), 250 (20), 126 (14).
m.p. 170–172 .
(C=O), 1673 cm
3432br (OH), 1960 (C=C=C), 1700
max
1
(
13C=O). 1H n.m.r. (200 MHz, CDCl3)
7 36–7 28, m, 7 25–7 13, m, C 10–80; 5 61–5 55, m, ethenyl
=CH–; 5 44–4 92, m, ethenyl =CH2, H 2; 4 90, s, H 100; 4 30,
d, J 2 1 Hz, H 90; 3 54–3 39, m, H 120. 13C n.m.r. (50 MHz,
CDCl3) 211 81, 211 63, C 3; 171 22, 170 84 (intense), C=O;
143 20, 143 06, 140 48, 140 39, 140 24, 140 05, C 4a0, C 8a0,
C 9a0, C 10a0; 137 77, 137 58, ethenyl =CH–; 126 77, 126 61,
126 53, 126 46, 126 30, 125 58, 125 44, 124 04, 123 83,
123 76, 123 68, 123 63, 123 39, C 10–80; 116 38, 116 31,
ethenyl =CH2; 108 96, 108 91, 108 26, 108 22, C 110; 90 18
( anked by d, J 40 Hz), 89 94 ( anked by d, J 40 Hz), C 2;
50 53, 50 33, 50 03, 49 55, 49 47, C 90, C 100; 49 38, 48 87,
At 750 /0 02 mmHg.
2961 88w, 2920 4w, 2888 0s,
max
2870 6m, 2863 2s, 2815 3s, 2345 0s (CO2), 2340 2s (CO2),
2339 1s (CO2), 2279 5m (13CO2), 2273 7 (13CO2), 2154 3,
2138 4s (CO), 2106 6m, 2091 3s (13CO), 878 6m, 837 5m,
783 6m, 728 1m cm 1. G.c.–m.s.: product A (tR 11 89 min),
m/z 178 (M, 100%), 177 (30), 176 (50), 152 (30), 151 (28),
150 (25), 89 (80), 88 (54), 87 (18), 76 (65), 75 (32), 74 (15),
63 (25); product B (tR 16 04 min), m/z 254 (M, 70%), 253
(100), 252 (40), 250 (20), 126 (14).