C O M M U N I C A T I O N S
Scheme 6. Apoptolidinone Endgame Strategya
D. W.; Herzenberg, L. A.; Khosla, C. Proc. Natl. Acad. Sci. U.S.A. 2000,
97, 14766.
(2) See ref 1a and Hayakawa, Y.; Kim, J. W.; Adachi, H.; Shin-ya, K.; Fujita,
K.; Seto, H. J. Am. Chem. Soc. 1998, 120, 3524.
(3) (a) Wehlan, H.; Dauber, M.; Fernaud, M. T. M.; Schuppan, J.; Mahrwald,
R.; Ziemer, B.; Garcia, M. E. J.; Koert, U. Angew. Chem., Int. Ed. 2004,
43, 4597. (b) Nicolaou, K. C.; Fylaktakidou, K. C.; Monenschein, H.; Li,
Y.; Weyershausen, B.; Mitchell, H. J.; Wei, H.; Guntupalli, P.; Hepworth,
D.; Sugita, K. J. Am. Chem. Soc. 2003, 125, 15433. (c) Nicolaou, K. C.;
Li, Y.; Sugita, K.; Monenschein, H.; Guntupalli, P.; Mitchell, H. J.;
Fylaktakidou, K. C.; Vourloumis, D.; Giannakakou, P.; O’Brate, A. J.
Am. Chem. Soc. 2003, 125, 15443. (d) Nicolaou, K. C.; Li, Y.;
Fylaktakidou, K. C.; Mitchell, H. J.; Wei, H. X.; Weyershausen, B. Angew.
Chem., Int. Ed. 2001, 40, 3849. (e) Nicolaou, K. C.; Li, Y.; Fylaktakidou,
K. C.; Mitchell, H. J.; Sugita, K. Angew. Chem., Int. Ed. 2001, 40, 3854.
(4) (a) Wu, B.; Liu, Q.; Sulikowski, G. A. Angew. Chem., Int. Ed. 2004, 43,
6673. (b) Schuppan, J.; Wehlan, H.; Keiper, S.; Koert, U. Angew. Chem.,
Int. Ed. 2001, 40, 2063.
(5) (a) Jin, B.; Liu, Q.; Sulikowski, G. A. Tetrahedron 2005, 61, 401. (b)
Abe, K.; Kato, K.; Arai, T.; Rahim, M. A.; Sultana, I.; Matsumura, S.;
Toshima, K. Tetrahedron Lett. 2004, 45, 8849. (c) Paquette, W. D.; Taylor,
R. E. Org. Lett. 2004, 6, 103. (d) Chng, S. S.; Xu, J.; Loh, T. P.
Tetrahedron Lett. 2003, 44, 4997. (e) Chen, Y.; Evarts, J. B.; Torres, E.;
Fuchs, P. L. Org. Lett. 2002, 4, 3571. (f) Toshima, K.; Arita, T.; Kato,
K.; Tanaka, D.; Matsumura, S. Tetrahedron Lett. 2001, 42, 8873. (g)
Schuppan, J.; Ziemer, B.; Koert, U. Tetrahedron Lett. 2000, 41, 621. (h)
Sulikowski, G. A.; Lee, W. M.; Jin, B.; Wu, B. Org. Lett. 2000, 2, 1439.
(6) (a) Wender, P. A.; Jankowski, O. D.; Tabet, E. A.; Seto, H. Org. Lett.
2003, 5, 2299. (b) Wender, P. A.; Jankowski, O. D.; Tabet, E. A.; Seto,
H. Org. Lett. 2003, 5, 487. (c) Wender, P. A.; Gulledge, A. V.; Jankowski,
O. D.; Seto, H. Org. Lett. 2002, 4, 3819. (d) Pennington, J. D.; Williams,
H. J.; Salomon, A. R.; Sulikowski, G. A. Org. Lett. 2002, 4, 3823.
(7) Wender, P. A.; Sukopp, M.; Longcore, K. Org. Lett. 2005, 7, 3025.
(8) (a) Crimmins, M. T.; Chaudhary, K. Org. Lett. 2000, 2, 775. (b) Crimmins,
M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org. Chem. 2001, 66,
894.
(9) Crimmins, M. T.; Emmitte, K. A.; Katz, J. D. Org. Lett. 2000, 2, 2165.
(10) (a) Delamarche, I.; Mosset, P. J. Org. Chem. 1994, 59, 5453. (b) Astles,
P. C.; Thomas, E. J. J. Chem. Soc., Perkin Trans. 1 1997, 845.
(11) The use of inexpensive, commercial TiCl4 in the aldol reaction and the
bright yellow color of the acylated thiazolidinethiones simplify the use
and purification of these compounds.
(12) Use of the lithium, rather than sodium, enolate of compound 12 provided
the best yields; see ref 9.
(13) Mancuso, A. J.; Huang, S. J.; Swern, D. J. Org. Chem. 1978, 43, 2480.
(14) (a) Reetz, M. T.; Kesseler, K.; Jung, A. Tetrahedron Lett. 1984, 25, 729.
(b) Danishefsky, S. J.; DeNinno, M. P.; Phillips, G. B.; Zelle, R. E.; Lartey,
P. A. Tetrahedron 1986, 42, 2809.
(15) Evans, D. A.; Fu, G. C.; Hoveyda, A. H. J. Am. Chem. Soc. 1992, 114,
6671.
(16) (a) Sinisterra, J. V.; Marinas, J. M.; Riquelme, F.; Arias, M. S. Tetrahedron
1988, 44, 1431. (b) Alvarez-Ibarra, C.; Arias, S.; Banon, G.; Fernandez,
M. J.; Rodriguez, M.; Sinisterra, V. J. Chem. Soc., Chem. Commun. 1987,
1509. (c) Alvarez-Ibarra, C.; Arias, S.; Fernandez, M. J.; Sinisterra, J. V.
J. Chem. Soc., Perkin Trans. 2 1989, 503.
(17) Paterson, I.; Yeung, K.; Smaill, J. B. Synlett 1993, 774.
(18) The yield of cyclization product was critically dependent on the choice
of hydroxyl protecting groups at C25 and C23; for example, the bis-TES
derivative gave only 50-60% of product 17.
(19) Koert has reported dihydroxylation reactions on similar alkenes in his
apoptolidin A synthetic studies; see refs 3a, 4b, and 5f.
a Conditions: (a) K2CO3, MeOH, 10-15 °C, 5 h, 93%; (b) (COCl)2,
Me2SO, CH2Cl2, then Et3N, -78 °C to 25 °C, 94%; (c) Ph3PdC(Me)CHO
(25), PhCl, 90 °C, 78%; (d) CH3PPh3Br, KOt-Bu, THF, 25 °C, 98%; (e) 3,
10% Cl2(PCy3)(Imes)RudCHPh, CH2Cl2, 25 °C, 3 h, 63% + 31% 26; (f)
t-BuSiMe2Cl, imidazole, DMF, 25 °C, 12 h, 75%; (g) LiOH-H2O, THF,
MeOH, H2O (6:2:1), 25 °C, 2.5 days, 77%; (h) 2,4,6-Cl3C6H2C(O)Cl, Et3N,
THF, 25 °C, 4 h, then PhMe, DMAP, 25 °C, 20 h, 68%; (i) H2SiF6, CH3CN,
H2O, -18 °C, 2 days, then 0 °C, 2 days, 61%.
provided the desired E isomer 27 in good yield (>95:5 E:Z by 1H
NMR analysis). While 2 equiv of the tetraene 3 was utilized in the
cross-metathesis, the homodimer of tetraene 3 could be recovered
and recycled. To complete the synthesis of apoptolidinone, the
alcohol 27 was protected as its TBS ether 28.27 Treatment of the
ester 28 with LiOH at room temperature rapidly cleaved the
carbonate group and eventually the ester to give a good yield of
the desired seco acid. Regioselective macrolactonization proceeded
smoothly under Yamaguchi’s conditions to deliver lactone 29.28
Cleavage of the silyl ethers and hydrolysis of the mixed methyl
3a,29
acetal were effected in one operation using H2SiF6
to furnish
apoptolidinone (2),30 the analytical data for which were consistent
with those reported previously.4a,b
An efficient, enantioselective synthesis of apoptolidinone has
been completed, demonstrating the versatility of thiazolidinethione
auxiliaries. This successful approach will be directly applicable to
the synthesis of apoptolidin A; progress toward this goal is
underway.
(20) DeCamp, A. E.; Mills, S. G.; Kawaguchi, A. T.; Desmond, R.; Reamer,
R. A.; DiMichele, L.; Volante, R. P. J. Org. Chem. 1991, 56, 3564.
(21) Over 5 g of carbonate 18 has been prepared by this sequence.
(22) Bestmann, H.-J.; Hartung, H. Chem. Ber. 1966, 99, 1198.
(23) Kiyooka, S.; Hena, M. A. J. Org. Chem. 1999, 64, 5511.
(24) Chatterjee, A. K.; Choi, T. L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem.
Soc. 2003, 125, 11360.
Acknowledgment. Financial support from the National Cancer
Institute (CA63572) is gratefully acknowledged.
(25) Two equivalents of the trieneoate 3 was used.
(26) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953.
(27) The cross-metathesis reaction proceeds in poor yield (∼20%) if the reaction
is performed with the TBS group present on the C9 oxygen. However,
the subsequent lactonization reaction fails if the reaction is attempted with
the free hydroxyl group at C9.
Supporting Information Available: Experimental procedures and
1
copies of H and 13C NMR spectra. This material is available free of
(28) See ref 3c and Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi,
M. Bull. Chem. Soc. Jpn. 1979, 52, 1989.
(29) Pilcher, A. S.; Hill, D. K.; Shimshock, S. J.; Waltermire, R. E.; DeShong,
P. J. Org. Chem. 1992, 57, 2492.
(30) HF-pyr used by both Koert (ref 4b) and Sulikowski (ref 4a) in their similar
deprotections was not useful in our hands.
References
(1) (a) Kim, J. W.; Adachi, H.; Shin-ya, K.; Hayakawa, Y.; Seto, H. J. Antibiot.
1997, 50, 628. (b) Salomon, A. R.; Voehringer, D. W.; Herzenberg, L.
A.; Khosla, C. Chem. Biol. 2001, 8, 71. (c) Salomon, A. R.; Zhang, Y.;
Seto H.; Khosla, C. Org. Lett. 2001, 3, 57. (d) Salomon, A. R.; Voehringer,
JA0549289
9
13812 J. AM. CHEM. SOC. VOL. 127, NO. 40, 2005