Sequence Approach to Annelated 2-Amino Pyridines
SCHEME 1. Coupling-Isomerization Reaction (CIR), a
Novel Synthesis of Enones and Eniminesa
SCHEME 2. Retrosynthetic Concept of a Consecutive
One-Pot Three-Component Annelated 2-Amino Pyridine
Synthesisa
a EWG: electron-withdrawing group; X ) O, NTos.
coupling is a mild and efficient route to chalcones6 or enimines,7
respectively (Scheme 1).
a Ar1 ) EWG(het)aryl; Ar2 ) (het)aryl.
Mechanistically, the CIR can be rationalized as a rapid
palladium/copper-catalyzed alkynylation reaction, followed by
the slow base-catalyzed isomerization of a propargyl alcohol
into an enone. In the past years, this new chalcone synthesis
has been applied as an entry to novel three- and four-component
syntheses of pyrazolines,6 pyrimidines,8 dihydrobenzo[b][1,4]-
thiazepines and -diazepines,9 pyrrols and furans,10 and pyridines,
pyrindines, and tetrahydroquinolines11 in the sense of consecu-
tive one-pot processes. These syntheses are based on subsequent
Michael addition-cyclocondensations following the CIR. Be-
cause N-tosyl enimines can be well-considered as electron-
deficient heterodienes that are perfectly suited for Diels-Alder
reactions with inverse electron demand,12 we could recently
show that a CIR-cycloaddition sequence with a very electron-
rich dienophile such as diethyl ketene acetal readily furnishes
2-ethoxy pyridines.7 Here we report the extension of the one-
pot synthesis of annelated pyridines based on a CIR-cycload-
dition sequence with more nucleophilic N,S-ketene acetals as
well as the absorption and emission properties of the resulting
fluorescent pyrrolo[2,3-b]pyridines, [1,8]naphthyridines, and
pyrido[2,3-b]azepines.
SCHEME 3. One-Pot Three-Component Synthesis of
Annelated 2-Amino Pyridines
consecutive one-pot fashion (vide supra) and preliminary studies
on CIR-cycloaddition sequences,7,17 our retrosynthetic analysis
of five-, six-, and seven-membered annelated amino pyridines
based on the CI approach (Scheme 2) suggests enimines as key
intermediates. Because N,S-ketene acetals are fairly electron-
rich dienophiles18 for [4+2] cycloadditions with inverse electron
demand, a facile three-component CI-cycloaddition-aroma-
tization synthesis of annelated 2-amino pyridines can be easily
envisioned.
Thus, we submitted p-bromo benzonitrile (1a), 2-bromo
pyridine (1b), or 2-bromo pyrimidine (1c) and N-[1-aryl-prop-
2-ynyl] tosyl amides 2,7 and after some reaction time cyclic
N,S-ketene acetals 3,19 to the reaction conditions of the CIR in
a boiling mixture of THF and triethylamine. After aqueous
workup, the annelated 2-aminopyridines 4 were obtained in 31-
66% yield as light yellow crystalline solids (4a-e, 4g-i) or
brown oils (4f, 4j; Scheme 3, Table 1).
Results and Discussion
Annelated 2-amino pyridines, where the amino group is an
endo constituent of the annelated saturated ring, are pharma-
ceutically intriguing structures. In particular, pyrrolo[2,3-b]-
pyridines or 7-azaindolines,13 [1,8]naphthyridines,14 and pyrido-
[2,3-b]azepines15 have received considerable interest as a
consequence of their broad pharmacological activity. Just
recently, Zard has reported a fairly general synthetic access
based on tin-free radical cyclizations.16 On the basis of our
experience in diversity-oriented heterocycle syntheses in a
The structures of the annulation products 4 were unambigu-
1
ously assigned by H, 13C, COSY, and NOESY NMR experi-
(14) For a recent pharmaceutical use of this class of compounds, see for
example: (a) Hutchinson, J. H.; Halczenko, W.; Brashear, K. M.; Breslin,
M. J.; Coleman, P. J.; Duong, L. T.; Fernandez-Metzler, C.; Gentile, M.
A.; Fisher, J. E.; Hartman, G. D.; Huff, J. R.; Kimmel, D. B.; Leu, C. T.;
Meissner, R. S.; Merkle, K.; Nagy, R.; Pennypacker, B.; Perkins, J. J.;
Prueksaritanont, T.; Rodan, G. A.; Varga, S. L.; Wesolowski, G. A.;
Zartman, A. E.; Rodan, S. B.; Duggan, M. E. J. Med. Chem. 2003, 46,
4790-4798. (b) Thomas Leonard, J.; Anbalagan, N.; Sadish Kumar, S.;
Kishore Gnanasam, S.; Sridhar, S. Biol. Pharm. Bull. 2002, 25, 215-217.
(c) Badawneh, M.; Ferrarini, P. L.; Calderoni, V.; Manera, C.; Martinetti,
E.; Mori, C.; Saccomanni, G.; Testai, L. Eur. J. Med. Chem. 2001, 36,
925-934.
(15) Kavali, J. R.; Badani, B. V. Farmaco 2000, 55, 406-409.
(16) Bacque´, E.; El Qacemi, M.; Zard, S. Z. Org. Lett. 2004, 6, 3671-
3674.
(17) D′Souza, D. M.; Rominger, F.; Mu¨ller, T. J. J. Angew. Chem., Int.
Ed. 2005, 44, 153-158.
(18) Mu¨ller, K.; Sauer, J. Tetrahedron Lett. 1984, 24, 2541-2544.
(19) The N,S-ketene acetals were synthesized in a three-step sequence
starting from the corresponding cyclic amides, according to: Yde, B.;
Yousif, N. M.; Pedersen, U.; Thomsen, I.; Lawesson, S.-O. Tetrahedron
1984, 40, 2047-2052. By thionation with Lawesson’s reagent, the amides
were converted into the thiocarbonyl compounds in excellent yields (85-
95%). After methylation with methyl iodide and recrystallisation from
acetone, S-alkylated iodide salts (75-90%) were treated with potassium
tert-butoxide to furnish the N,S-ketene acetals in moderate overall yields
(35-65%).
(7) Dediu, O. G.; Yehia, N. A. M.; Mu¨ller, T. J. J. Z. Naturforsch. B:
Chem. Sci. 2004, 59, 443-450.
(8) Mu¨ller, T. J. J.; Braun, R.; Ansorge, M. Org. Lett. 2000, 2, 1967-
1970.
(9) (a) Braun, R. U.; Mu¨ller, T. J. J. Tetrahedron 2004, 60, 9463-9469.
(b) Braun, R. U.; Zeitler, K.; Mu¨ller, T. J. J. Org. Lett. 2000, 2, 4181-
4184.
(10) (a) Braun, R. U.; Mu¨ller, T. J. J. Synthesis 2004, 2391-2406. (b)
Braun, R. U.; Zeitler, K.; Mu¨ller, T. J. J. Org. Lett. 2001, 3, 3297-3300.
(11) (a) Dediu, O. G.; Yehia, N. A. M.; Oeser, T.; Polborn, K.; Mu¨ller,
T. J. J. Eur. J. Org. Chem. 2005, 1834-1848. (b) Yehia, N. A. M.; Polborn,
K.; Mu¨ller, T. J. J. Tetrahedron Lett. 2002, 43, 6907-6910.
(12) (a) Sauer, J.; Wiest, H. Angew. Chem., Int. Ed. Engl. 1962, 1, 268.
(b) Sauer, J.; Sustmann, R. Angew. Chem., Int. Ed. Engl. 1980, 19, 779-
807. (c) Boger, D. L.; Patel, M. In Progress in Heterocyclic Chemistry;
Suschitzky, H., Scriven, E. F. V., Eds.; Pergamon Press: Oxford, 1989,
Vol. 1.
(13) (a) Desarbre, E.; Me´rour, J.-Y. Tetrahedron Lett. 1996, 37, 43-46.
(b) Taylor, E. C.; Pont, J. L. Tetrahedron Lett. 1987, 28, 379-382. (c)
Beattie, D. E.; Crossley, R.; Curran, A. C. W.; Hill, D. G.; Lawrence, A.
E. J. Med. Chem. 1977, 20, 718-721. (d) Robison, M. M.; Robison, B. L.;
Butler, F. P. J. Am. Chem. Soc. 1959, 81, 743-747.
J. Org. Chem, Vol. 71, No. 9, 2006 3495