COMMUNICATIONS
The crude product was separated by HPLC with an ion-
exchange resin (Hitachi gel 3013c)[3] to afford 5,11-dideoxy-
tetrodotoxin (2), 4-epi-5,11-dideoxytetrodotoxin (21), and 4,9-
anhydro-epi-5,11-dideoxytetrodotoxin (22)[28] in yields of 29,
16, and 36%, respectively. These structures were confirmed
by full characterization by the NMR techniques COSY,
HMBC, and HSQC, and by FAB mass spectrometry.
We have achieved a highly stereocontrolled synthesis of
( )-5,11-dideoxytetrodotoxin and its isomer. This is the first
asymmetric synthesis of tetrodotoxin analogues and provides
a practical route accessible to the labeled compounds for
biochemical studies. Further studies toward naturally occur-
ring tetrodotoxin (1) and other analogues are in progress in
our laboratory.
MeO OMe
COCCl3
OAc
H
OMe
NH
OAc
Me
H
g, h
a, b, c
d, e, f
N
O
3
BnO
H
OBn
O
O
O
NHBn
Me
OAc O
O
H
16
17
OAc
H
OAc
H
OMe
NBn
OMe
Me
Me
j
i
NBn
N
N
H
H
H
OBn
O
OBn
O
O
O
O
O
N
NHBn
Bn
Ac
H
H
19
18
OH
H
OAc
H
OH
NH
Received: April 15, 1999 [Z13284IE]
German version: Angew. Chem. 1999, 111, 3268 ± 3271
OMe
NAc
Me
Me
k, l
N
N
+
H
H
H
OH
NH2
AcO
OAc
O
O
O
NHAc
Keywords: asymmetric synthesis ´ natural products ´ syn-
thetic methods ´ tetrodotoxins
OH
H
O
O
20
2
[1] For the structure: a) T. Goto, Y. Kishi, S. Takahashi, Y. Hirata,
Tetrahedron 1965, 21, 2059 ± 2088; b) K. Tsuda, S. Ikuma, M.
Kawamura, K. Tachikawa, K. Sakai, C. Tamura, O. Akamatsu, Chem.
Pharm. Bull. 1964, 12, 1357 ± 1374; c) R. B. Woodward, Pure Appl.
Chem. 1964, 9, 49 ± 74.
OH
H
OH
H
4
NH
4
NH
Me
Me
N
N
H
H
+
OH
O
NH2
AcO
H
H
OH
OH
OH
O
NH2
AcO
O
O
O
9
[2] T. Narahashi, Physiol. Rev. 1974, 54, 813 ± 889.
[3] a) 5,6,11-Trideoxytetrodotoxin: M. Yotsu-Yamashita, Y. Yamagishi, T.
Yasumoto, Tetrahedron Lett. 1995, 51, 9329 ± 9332; b) 1-hydroxy-5,11-
dideoxytetrodotoxin: Y. Kotaki, Y. Shimizu, J. Am. Chem. Soc. 1993,
115, 827 ± 830; c) 6-epi- and 11-deoxytetrodotoxin: T. Yasumoto, M.
Yotsu, M. Murata, H. Naoki, J. Am. Chem. Soc. 1988, 110, 2344 ± 2345.
[4] ªTetrodotoxin, Saxitoxin, and the Molecular Biology of the Sodium
Channelº: Ann. N.Y. Acad. Sci. 1986, 479 (review series).
[5] a) H. Nakayama, Y. Hatanaka, M. Takai, E. Yoshida, Y. Kanaoka,
Ann. N.Y. Acad. Sci. 1993, 707, 349; b) G. M. Lipkind, H. A. Fozzard,
Biophys. J. 1994, 66, 1 ± 33.
21
22
Scheme 3. Synthesis of 5,11-dideoxytetrodotoxin (2). a) H5IO6, AcOEt, rt,
24 h; b) CSA, CH(OMe)3, MeOH, rt, 10 h; c) Ac2O, pyridine, DMAP, rt,
24 h, 78% over three steps; d) BnNH2, Na2CO3, DMF, 1408C, 15 min;
e) KCN, EtOH, rt, 1 h; f) CSA, acetone, rt, 2 h, 70% over three steps;
g) Ph3P, CBr4, Et3N, CH2Cl2, rt, 4 h; h) BnNH2 ´ HCl, pyridine, reflux, 5.5 h;
i) Ac2O, pyridine, Et3N, rt, 4.5 h, 85% over three steps; j) H2 (1 atm),
Pd(OH)2/C, Ac2O, rt, 14 d, 81%; k) aq. NH3, MeOH H2O, rt, 20 h; l) TFA,
H2O, rt, 34 h, 81% over two steps. CSA 10-camphorsulfonic acid,
DMAP 4-dimethylaminopyridine, TFA trifluoroacetic acid.
[6] Tetrodotoxin was identified as a pheromonelike substance among the
puffer fish. K. Matsumura, Nature 1995, 378, 563.
[7] For examples of some labeled tetrodotoxin derivatives, see: a) M.
Balerna, A. Lombet, R. Chicheportiche, G. Romey, M. Lazdunski,
Biochim. Biophys. Acta 1981, 644, 219 ± 225; b) J. Bontemps, R.
Cantineau, C. Grandfils, P. Leprince, G. Dandrifosse, E. Schoffeniels,
Anal. Biochem. 1984, 139, 149 ± 157; c) B. Q. Wu, L. Yang, C. Y. Kao,
S. R. Levinson, M. Yotsu-Yamashita, T. Yasumoto, Toxicon 1996, 34,
407 ± 416.
[8] Recent reports: a) B. Noya, R. Alonso, Tetrahedron Lett. 1997, 38,
2745 ± 2748; b) C. S. Burgey, R. Vollerthun, B. Fraser-Reid, J. Org.
Chem. 1996, 61, 1609 ± 1618; c) K. Sato, Y. Kajihara, Y. Nakamura, J.
Yoshimura, Chem. Lett. 1991, 1559 ± 1562; d) J. F. W. Keana, J. S.
Bland, P. J. Boyle, M. Erion, R. Hartling, J. R. Husman, R. B. Roman,
G. Ferguson, M. Parvez, J. Org. Chem. 1983, 48, 3627 ± 3631; J. F. W.
Keana, P. J. Boyle, M. Erion, R. Hartling, J. R. Husman, J. E.
Richman, R. M. Wah, J. Org. Chem. 1983, 48, 3621 ± 3626.
[9] a) Y. Kishi, M. Aratani, T. Fukuyama, F. Nakatsubo, T. Goto, S. Inoue,
H. Tanino, S. Sugiura, H. Kakoi, J. Am. Chem. Soc. 1972, 94, 9217 ±
9219; b) Y. Kishi, T. Fukuyama, M. Aratani, F. Nakatsubo, T. Goto, S.
Inoue, H. Tanino, S. Sugiura, H. Kakoi, J. Am. Chem. Soc. 1972, 94,
9219 ± 9221; c) Y. Kishi, F. Nakatsubo, M. Aratani, T. Goto, S. Inoue,
H. Kakoi, S. Sugiura, Tetrahedron Lett. 1970, 5127 ± 5128; d) Y. Kishi,
F. Nakatsubo, M. Aratani, T. Goto, S. Inoue, H. Kakoi, Tetrahedron
Lett. 1970, 5129 ± 5132.
transformed into the acetal urea under the above-mentioned
conditions. Mild deacetylation with potassium cyanide in
ethanol,[25] and partial hydrolysis of the acetal gave the urea 17
(as a 5:1 diastereomeric mixture at the acetal carbon) as the
precursor to the guanidine installation. The major isomer 17
was separated and dehydrated with Ph3P and CBr4 to afford
the carbodiimide, which was further treated with benzylamine
hydrochloride in pyridine[26] to furnish the dibenzylguanidine
18 in a high yield. Our model studies revealed that the benzyl
group of benzylguanidinium salts was difficult to remove
under hydrogenolytic conditions, while the benzyl group of
acetylbenzylguanidine could be easily removed under the
same conditions.[12b] In the event, the corresponding acetyl-
benzylguanidine 19 was hydrogenolyzed in acetic anhydride
under one atmosphere of hydrogen to give diacetylguanidine
20 in a good yield.[27] Under the reaction conditions, the benzyl
ether in 19 was also converted to an acetyl group. At this
stage, all the protective groups were unified to acetyl groups
except for the acetal.
[10] M. Isobe, T. Nishikawa, S. Pikul, T. Goto, Tetrahedron Lett. 1987, 28,
6485 ± 6488.
[11] Reviews: a) L. E. Overman, Acc. Chem. Res. 1980, 13, 218 ± 224; b) K.
Ritter in Stereoselective Synthesis (Houben-Weyl) Vol. 21/9 E21, Vol. 9
(Eds.: G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann),
Thieme, Stuttgart, 1996, pp. 5677 ± 5699.
To complete the synthesis of 5,11-dideoxytetrodotoxin (2),
two steps of deprotection were carried out. Thus, hydrolysis of
the acetyl groups with ammonium hydroxide and then acid
hydrolysis of the acetal with aqueous TFA was performed.
Angew. Chem. Int. Ed. 1999, 38, No. 20
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999
1433-7851/99/3820-3083 $ 17.50+.50/0
3083