ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Urea Activation of Nitrimines: A Mild,
Metal-Free Approach to Sterically
Hindered Enamines
David M. Nickerson, Veronica V. Angeles, and Anita E. Mattson*
The Ohio State University, Department of Chemistry and Biochemistry,
100 West 18th Avenue, Columbus, Ohio 43210, United States
Received August 13, 2013
ABSTRACT
Nitrimines have been identified as impressive starting points for the syntheses of otherwise inaccessible, sterically encumbered enamines. The
activation of nitrimines with urea catalysts for reaction with a variety of amines enables the formation of highly substituted enamines in high yield.
The reactions benefit from mild, metal-free conditions, high functional group tolerance, and straightforward scale up.
Enamines have long been a staple in the organic che-
mist’s toolbox accomplishing a wide variety of synthetic
transformations.1 For example, through asymmetric hy-
drogenation, enamines provide access to highly substi-
tuted, enantioenriched amines, key components in a
number of active pharmaceutical ingredients.2 Many
simple enamines are accessible via traditional Lewis or
Brønsted acid promoted condensation reactions of amines
with carbonyl compounds; however, these methods often
suffer from harsh reaction conditions and fail with steri-
cally hindered carbonyls or electronically poor amines
(Scheme 1, eq 1).3
To address the limits of conventional methods, chemists
have recently developed organometallic processes as
alternatives for certain enamine preparations (Scheme 1,
eq 2).2b,4 Still, transition metal catalyzed enamine cross-
couplings are limited by low functional group tolerance
and failure in the presence of hindered substrates.4a Mild,
reliable, and general conditions to construct highly func-
tionalized, sterically encumbered enamines remain an un-
met demand.
(4) (a) Willis, M. C.; Brace, G. N. Tetrahedron Lett. 2002, 41, 9085.
(b) Barluenga, J.; Fernandez, M. A.; Aznar, F.; Valdes, C. Chem.
Commun. 2002, 20, 2362.
(5) (a) Pihko, P. Hydrogen Bonding in Organic Synthesis; Wiley-VCH:
Weinheim, 2009. (b) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107,
5713. (c) Akiyama, T. Chem. Rev. 2007, 107, 5744. (d) Berkessel, A.;
(1) (a) Enamines: Synthesis, Structure, and Reactions; Cook, G. A.,
Ed.; Marcel Dekker: New York, 1988. (b) Whitesell, J. K. In Comprehensive
Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Oxford: Pergamon, 1991.
(c) The Chemistry of Enamines, Rappaport, Z., Ed.; Wiley: New York,
1994.
(2) For applications to pharmaceuticals, see: (a) Hansen, K. B.;
Hsiao, Y.; Xu, F.; Rivera, N.; Clausen, A.; Kubryk, M.; Krska, S.;
Rosner, T.; Simmons, B.; Balsells, J.; Ikemoto, N.; Sun, Y.; Spindler, F.;
Malan, C.; Grabowski, E. J.; Armstrong, J. D., III. J. Am. Chem. Soc.
2009, 131, 8798. (b) Wallace, D.; Campos, K.; Shultz, C. S.; Klapars, A.;
Zewge, D.; Crump, B.; Phenix, B.; McWilliams, J. C.; Krska, S.; Sun, K.;
Chen, C.; Spindler, F. Org. Process Res. Dev. 2009, 13, 84. (c) Kreis,
L. M.; Carreira, E. M. Angew. Chem., Int. Ed. 2012, 51, 3436. (d) For
examples of asymmetric catalytic reduction of enamines, see: (e) Lee,
N. E.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 5985. (f) Malkov,
A. V.; Vrankova, K.; Stoncius, S.; Kocovsky, P. J. Org. Chem. 2009, 74,
5839.
€
Groger, H. Asymmetric Organocatalysis; Wiley-VCH: Weinheim, 2005.
(6) For recent reviews on (thio)urea catalysis, see: (a) Takemoto, Y.
Chem. Pharm. Bull. 2010, 58, 593–601. (b) Zhang, Z.; Schreiner, P.
Chem. Soc. Rev. 2009, 38, 1187–1198. (c) Connon, S.; Kavanagh, S.;
Piccinini, A. Org. Biomol. Chem. 2008, 6, 1339–1343. (d) Takemoto, Y.
Org. Biomol. Chem. 2005, 3, 4299. For recent examples, see: (e) Lin, S.;
Jacobsen, E. N. Nat. Chem. 2012, 4, 817. (f) Kimmel, K. L.; Weaver,
J. D.; Ellman, J. A. Chem. Sci. 2012, 3, 121. (g) So, S. S.; Auvil, T. J.;
Garza, V. J.; Mattson, A. E. Org. Lett. 2012, 14, 444. (h) So, S. S.;
Mattson, A. E. J. Am. Chem. Soc. 2012, 134, 8798. (i) Nickerson, D. M.;
Mattson, A. E. Chem.;Eur. J. 2012, 18, 8310. (j) Burns, N. Z.; Witten,
M. R.; Jacobsen, E. N. J. Am. Chem. Soc. 2011, 133, 14578. (k) Li, X.; Xi,
Z.; Luo, S.; Cheng, J. Adv. Synth. Catal. 2010, 352, 1097. (l) Reisman,
S. E.; Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 7198.
(m) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520.
(n) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999.
(o) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901.
(3) (a) Hickmott, P. W. Tetrahedron 1982, 38, 1975. (b) Carlson, R.;
Nilsson, A. Acta Chem. Scand. B 1984, 38, 49.
r
10.1021/ol402310b
XXXX American Chemical Society