(hexane–AcOEt–CH2Cl2 18+1+1) gave 17/18 (61 mg, 55%, 45+55), which
were separated by preparative HPLC (hexane–AcOEt 12+1; 9 ml min21).
Selected data for 17: Rf (hexane–AcOEt–CH2Cl2 4+1+1) 0.36; [a]2D5 +51.4
(c 1.16, CH2Cl2); nmax(CH2Cl2)/cm21 3032w, 2927m, 2963m, 1604w,
1493m, 1453m, 1420m, 1364m, 1092s, 1027s; dH(300 MHz, CDCl3)
7.62–7.11 (m, 20 arom. H), 4.87 (d, J 10.6, PhCH), 4.85 (d, J 10.9, PhCH),
4.83 (d, J 10.9, PhCH), 4.77 (d, J 10.9, PhCH), 4.71 (d, J 12.1, PhCH),
4.70–4.66 (m, BOCH), 4.68 (d, J 10.9, PhCH), 4.66 (d, J 10.9, PhCH), 4.64
(d, J 12.1, PhCH), 3.91 [t, J 8.7, H–C(5)], 3.74 [dd, J 11.2, 4.0, H–C(8)],
3.73 [dd, J 11.2, 1.9, HA–C(8)], 3.68 [d, J 9.0, irrad. at 3.91 ? d, J ≈ 4, H–
C(4)], 3.67–3.63 [m, H–C(7)], 3.58 [t, J 8.4, irrad. at 3.91 ? dd, J ≈ 9, 3,
H–C(6)], 2.65–2.56 [m, 2 H–C(1)], 2.37–2.27 [m, irrad. at 2.6 ? d, J ≈ 10,
H–C(2)], 2.22–2.18 (m, BCH), 2.01–1.91 [m, irrad. at 2.6 ? d, J ≈ 10, HA–
C(2)], 2.01–1.46 (m, 12 H); dC(75 MHz, CDCl3, assignment based on 1H/
13C COSY) 142.03 (s), 139.00 (2s), 138.69, 138.29, 131.12 (3s),
129.79–127.12 (several d), 84.42 [d, C(5)], 81.57 [d, C(4)], 79.53 [d, C(6)],
75.60, 75.13, 74.73 (3t, 3 PhCH2), 74.19 (d, BOCH), 73.51 (t, PhCH2),
72.24 [d, C(7)], 69.99 [t, C(8)], 32.41 (t), 30.63 (t), 30.19 [t, C(1)], 28.91 [t,
C(2)], 27.54 (t), 25.63 (t), 22.89 (t), 21.91 (t), 21.30 (small br d, HCB),
signal of C(3) hidden by noise; dB(160 MHz, CDCl3) 52.02 (br s); m/z
(FAB) 821 ( < 1%, [M + Na]+), 799 ( < 1, [M + H]+), 599 (38), 553 (43, [M
2 BnOBOC8H14 + H]+), 447 (44), 181 (100). For 18: Rf (hexane–AcOEt–
CH2Cl2 10+1+1) 0.32; [a]2D5 +12.0 (c 0.65, CH2Cl2); nmax(CH2Cl2/cm21
3032w, 2927m, 1492m, 1453m, 1418w, 1364m, 1093s, 1027m, 1015m;
dH(300 MHz, CDCl3) 7.38–6.99 (m, 20 arom. H), 4.98 (d, J 11.8, PhCH),
4.85 (d, J 10.9, PhCH), 4.84 (s, PhCH2), 4.70 (d, J 11.8, PhCH), 4.71–4.67
(m, HCOB), 4.68 (d, J 12.1, PhCH), 4.62 (d, J 10.9, PhCH), 4.60 (d, J 12.1,
PhCH), 3.96 [dt, J ≈ 9.6, 4.0, H–C(7)], 3.78–3.70 [m, H–C(5), 2 H–C(8)],
3.60 [t, J 9.6, irrad. at 3.96 ? d, J ≈ 9, H–C(6)], 3.50 [d, J 9.4, H–C(4)],
2.74–2.67 [m, 2 H–C(1)], 2.25–2.21 (m, BCH), 2.05–1.95 [m, irrad. at 2.70
Scheme 5
diastereoisomeric mixtures 13/14 (31%; 35:65), 15/16 (42%;
40+60) and 17/18 (55%; 45:55) that were isolated by flash
chromatography. The isomers 15/16 and 17/18 were separated
by HPLC. The glycosyl borinates 13–18 were characterized by
FAB-MS, 11B NMR, 1H NMR, 13C NMR and IR spectroscopy.
They were stable at 210 °C for several weeks and not affected
by air.
The configuration of 17 and 18 was deduced from NOE
experiments (Fig. 1), with 17 showing NOEs between H–C(2)
and H–C(5), H–C(2) and H–C(7), and H–C(1A) and H–C(4),
indicating an axial orientation of the anomeric alkyl group. In
contradistinction, a small NOE between H–C(1A) and H–C(5)
and the lack of other NOEs > 1% for 18 indicate an equatorial
orientation of the anomeric alkyl group.
? d, J
≈ 12, H–C(2)], 1.99–1.26 (m, 13 H); dC(75 MHz, CDCl3,
assignment based on 1H/13C COSY) 141.75 (s), 139.26 (2s), 138.2, 137.8,
133.6 (3s), 129.9–127.14 (several d), 85.93 [d, C(5)], 84.90 [d, C(3)], 79.54
[d, C(6)], 76.00 [d, C(7)], 75.37, 75.09, 74.80 (3t, 3 PhCH2); 74.06 (d,
BOCH), 73.22 (t, PhCH2), 69.93 [t, C(8)], 37.14 [t, C(2)], 31.82 (t), 30.91
(t), 29.33 [t, C(1)], 26.79 (t), 25.77 (t), 23.38 (small br d, BCH), 22.48 (t),
21.92 (t), signal of C(3) hidden by noise; dB(160 MHz, CDCl3) 53.8 (br s);
m/z (FAB) 821 ( < 1%, [M + Na]+), 799 ( < 1, [M + H]+), 553 (43, [M 2
BnOBOC8H14 + H]+), 461 (28), 401 (41), 325 (60), 281 (87), 181 (100).
1 (a) A. Vasella, Glycosylidene Carbenes, in Bioorganic Chemistry, Vol.
3, Carbohydrates, ed. S. Hecht, OUP, New York, 1999, p. 56 and
references therein; (b) M. Weber, A. Vasella, M. Textor and N. D.
Spencer, Helv. Chim. Acta, 1998, 81, 1359; (c) K. Briner and A. Vasella,
Helv. Chim. Acta, 1992, 75, 621; (d) P. Uhlmann and A. Vasella, Helv.
Chim. Acta, 1992, 75, 1979; (e) A. Vasella and C. A. A. Waldraff, Helv.
Chim. Acta, 1991, 74, 585; (f) A. Vasella, P. Dhar and C. Witzig, Helv.
Chim. Acta, 1993, 76, 1767; (g) T. Rajamannar and A. Vasella,
unpublished results on the synthesis of N-glycosylsulfonamides.
2 A. Vasella, G. Baudin and L. Panza, J. Heteroatom Chem., 1991, 2,
151.
3 P. Uhlmann, D. Nanz, E. Bozo and A. Vasella, Helv. Chim. Acta, 1994,
77, 1430.
4 A. Suzuki, S. Nozawa, N. Miyaura and M. Itoh, Tetrahedron Lett., 1969,
2955.
Fig. 1
5 K. Briner and A. Vasella, Helv. Chim. Acta, 1989, 72, 1371.
6 G. Zweifel and H. C. Brown, Org. React., 1963, 13, 1.
7 D. J. Pasto and S. R. Snyder, J. Org. Chem., 1966, 31, 2777; D. S.
Matteson and M. L. Peterson, J. Org. Chem., 1987, 52, 5116.
8 H. Nöth and B. Wrackmeyer, NMR: Basic Principles and Progress,
1978, vol. 14, p. 140.
9 B. Wrackmeyer, Prog. Nucl. Magn. Reson. Spectrosc., 1979, 12, 227.
10 H. Nöth and B. Wrackmeyer, NMR: Basic Principles and Progress,
1978, vol. 14, p. 138.
We thank the Swiss National Science Foundation and F
Hoffmann-La Roche, Basel, for generous financial support.
Notes and references
‡ Synthesis of 17 and 18: at 25 °C, a solution of 12 (R,RA = H, 4-ClC6H4,
116 mg, 0.42 mmol) in abs. THF (3 ml) was treated portionwise with a
cooled (dry ice, ca. 260 °C) solution of 1 (77 mg, 0.14 mmol) in dry CH2Cl2
(0.8 ml) within 140 min, stirred for 2 h at 25 °C until complete
disappearance of 1. Evaporation at 20 °C and flash chromatography
11 J. A. Soderquist and M. R. Najafi, J. Org. Chem., 1986, 51, 1330.
Communication 9/06400A
2216
Chem. Commun., 1999, 2215–2216