Disruption of Phosphoprotein
−
Protein Interaction
A R T I C L E S
Chart 1. Molecular Structure of the Artificial Receptors, and
devoted to the development of small molecular inhibitors for
the surface interaction of the phosphoprotein binding domain
such as the SH2 domain.9 Most of them are peptidemimetics
of the phosphoprotein segment that can interact with a shallow
surface pocket (surface groove) of the phosphoprotein binding
domain. On the other hand, no small molecular inhibitors that
directly interact with a phosphoprotein have yet been reported.
This should be an alternative and promising strategy for
developing unique inhibitors for these phosphoprotein-protein
interactions.
Amino Acid Sequences of the Pin1WW Domain (6-39) and the
CTD Phosphopeptides Discussed Here
We have recently discovered the bis(Zn(II)-dipicolylamine
(Dpa)) derivatives as the first artificial receptors for multiply
phosphorylated peptides.10 Under neutral aqueous conditions,
a binuclear Zn(II)-Dpa-bipyridyl derivative strongly (Kapp > 105
M-1) binds to bis-phosphorylated peptides via a two-point
interaction, based on coordination chemistry between the Zn(II)
sites and the phosphate groups (i.e., the cross-linking strategy).
The preliminary results encouraged us to attempt the disruption
of the phosphoprotein-protein interaction using the Zn(II)-Dpa
complexes. Since the multiple phosphorylation serves as a
common mechanism regulating protein function and constitutes
a complicated regulatory program for signaling pathways like
a dynamic “molecular barcode” in living cells,11 it is expected
that the targeting multiphosphorylated proteins by a synthetic
small molecule will open a new possibility for artificial
regulation of a signal transduction cascade. We now report that
some of the artificial receptors can serve as a potent disruptor
for the phosphoprotein-protein surface interaction via a cross-
(6) (a) Yin, H.; Hamilton, A. D. Angew. Chem., Int. Ed. 2005, 44, 4130. (b)
Roy, B. C.; Banerjee, A. L.; Swanson, M.; Jia, X. G.; Haldar, M. K.; Mallik,
S.; Srivastava, D. K. J. Am. Chem. Soc. 2004, 126, 13206. (c) Banerjee,
A. L.; Swanson, M.; Roy, B. C.; Jia, X.; Haldar, M. K.; Mallik, S.;
Srivastava, D. K. J. Am. Chem. Soc. 2005, 126, 10875. (d) Jain, R.; Ernst,
J. T.; Kutzki, O.; Park, H. S.; Hamilton, A. D. Mol. DiVersity 2004, 8, 89.
(e) Salvatella, X.; Martinell, M.; Gair´ı, M.; Mateu, M. G.; Feliz, M.;
Hamilton, A. D.; de Mendoza, J.; Giralt, E. Angew. Chem., Int. Ed. 2004,
43, 196. (f) Gradl, S. N.; Felix, J. P.; Isacof, E. Y.; Garcia, M. L.; Trauner,
D. J. Am. Chem. Soc. 2003, 125, 12668. (g) Fazal, M. A.; Roy, B. C.; Sun,
S.; Mallik, S.; Rodgers, K. R. J. Am. Chem. Soc. 2001, 123, 6283. (h)
Peczu, M. W.; Hamilton, A. D. Chem. ReV. 2000, 100, 2479.
(7) (a) Ojida, A.; Miyahara, Y.; Kohira, T.; Hamachi, I. Biopolymers (Peptide
Science) 2004, 76, 177. (b) Ojida, A.; Mito-oka, Y.; Sada, K.; Hamachi, I.
J. Am. Chem. Soc. 2004, 126, 2454. (c) Ojida, A.; Mito-oka, Y.; Inoue,
M.; Hamachi, I. J. Am. Chem. Soc. 2002, 124, 6256. (d) Mito-oka, Y.;
Tsukiji, S.; Hiraoka, T.; Kasagi, N.; Shinkai, S.; Hamachi, I. Tetrahedron
Lett. 2001, 42, 7059. (e) Takashima, H.; Shinkai, S.; Hamachi, I. Chem.
Commun. 1999, 2345.
linking fashion. The detailed binding studies and the inhibition
assay using the phosphorylated CTD peptide and the WW
domain as a model pair revealed that the intramolecular
juxtaposition of the two Zn(II)-Dpa sites at a suitable distance
is crucial for the strong molecular recognition of the phospho-
rylated CTD peptide so as to produce the effective disruption
for their surface interaction.
Results and Discussion
Molecular Design of BisZn(II)-Dpa as Disruptor for
Phosphopeptide Interaction of WW Domain. WW domains
are a small binding motif for the proline-rich sequence and found
in many different signaling or structural proteins.2a,4d,12 They
are composed of approximately 40 amino acids and folded as
a stable, triple-stranded â-sheet. Among them, a WW domain
derived from the peptidyl-prolyl isomerase Pin1 is a class IV
WW domain, which specifically interacts with pSer-Pro or pThr-
Pro motifs.13 In this study, a recognition pair of the Pin1 WW
domain (6-39) and the CTD (C-terminal domain of RNA
polymerase II) doubly phosphorylated peptide was employed
as a model system for evaluating the inhibitory activity of our
artificial receptors (Chart 1), because of the rich structural basis
of their surface complex. An X-ray crystallographic analysis
(8) (a) Baberjee, A. L.; Tobwala, S.; Haldar, M. K.; Swanson, M.; Roy, B. C.;
Mallik, S.; Srivastava, D. K. Chemm. Commun. 2005, 2549. (b) Yin, H.;
Lee, G.-I.; Sedey, K. A.; Kutzki, O.; Park, H. S.; Orner, B. P.; Ernst, J. T.;
Wang, H.-G.; Sebti, S. M.; Hamilton, A. D. J. Am. Chem. Soc. 2005, 127,
10191. (c) Yin, H.; Lee, G.-I.; Sedey, K. A.; Rodriguez, J. M.; Wang, H.-
G.; Sebti, S. M.; Hamilton, A. D. J. Am. Chem. Soc. 2005, 127, 5463. (d)
Walensky, L. D.; Kung, A. L.; Escher, I.; Malia, T. J.; Barbuto, S.; Wright,
R. D.; Wagner, G.; Verdine, G. L.; Korsmeyer, S. J. Science 2004, 305,
1466. (e) Arkin, M. R.; Wells, J. A. Nat. ReV. Drug DiscoVery 2004, 3,
301. (f) Berg, T. ChemBioChem 2004, 5, 1051. (g) Horswill, A. R.; Savinov,
S. N.; Benkovic, S. J. PNAS 2004, 44, 15591. (h) Vassilev, L. T.; Vu, B.
T.; Graves, B.; Carvajal, D.; Podlaski, F.; Filipovic, Z.; Kong, N.; Kammlot,
U.; Lukacs, C.; Klein, C.; Fotouhi, N.; Liu, E. A. Science 2004, 303, 844.
(i) Berg, T. Angew. Chem., Int. Ed. 2003, 42, 2462. (j) Cochran, A. G.
Curr. Opin. Chem. Biol. 2001, 5, 654. (k) Cochran, A. G. Chem. Biol.
2000, 7, R85. (l) Blaskovich, M. A.; Lin, Q.; Delarue, F. L.; Sun, J.; Park,
H. S.; Coppola, D.; Hamilton, A. D.; Sebti, S. M. Nat. Biotechnol. 2000,
18, 1065.
(9) (a) Song, Y.-L.; Roller, P. P.; Long, Y.-Q. Bioorg. Med. Chem. Lett. 2004,
14, 3205. (b) Sundaramoorthi, R.; Kawahata, N.; Yang, M. G.; Shakespeare,
W. C.; Metcalf, C. A., III; Wang, Y.; Merry, T.; Eyermann, C. J.; Bohacek,
R. S.; Narula, S.; Dalgarno, D. C.; Sawyer, T. K. Biopolymers (Peptide
Science) 2003, 71, 717. (c) Mu¨ller, G. Top. Curr. Biol. 2000, 211, 19. (d)
Cody, W. L.; Lin, Z.; Panek, R. L.; Rose, D. W.; Rubin, J. R. Curr. Pharm.
Des. 2000, 6, 59. (e) Nguyen, J. T.; Turck, C. W.; Cohen, F. E.;
Zuckermann, R. N.; Lim, W. A. Science 1998, 282, 2088.
(12) (a) Sudol, M.; Sliwa, K.; Russo, T. FEBS Lett. 2001, 490, 190. (b) Zarrinpar,
A.; Lim, W. A. Nat. Struct. Biol. 2000, 7, 611.
(13) (a) Verdecia, M. A.; Bowman, M. E.; Lu, K. P.; Hunter, T.; Noel, J. P.
Nat. Struct. Biol. 2000, 7, 639. (b) Xu, Y.-X.; Hirose, Y.; Zhou, X. Z.; Lu,
K. P.; Manley, J. L. Genes & DeVelopment 2003, 17, 2765. (c) Lu, P.-J.;
Zhou, X.-Z.; Liou, Y.-C.; Noel, J.-P.; Lu, K.-P. J. Biol. Chem. 2002, 277,
2381. (d) Wintjens, R.; Wieruszeski, J.-M.; Drobecq, H.; Rousselot-Pailley,
P.; Bue´e, L.; Lippens, G.; Landrieu, I. J. Biol. Chem. 2001, 276, 25150.
(10) Ojida, A.; Inoue, M.; Mito-oka, Y.; Hamachi, I. J. Am. Chem. Soc. 2003,
125, 10184.
(11) (a) Yang, X.-J. Oncogene 2005, 24, 1653. (b) Holmberg, C. I.; Tran, S. E.
F.; Erikson, J. E.; Sistonen, L. Trends Biochem. Sci. 2002, 27, 619.
9
J. AM. CHEM. SOC. VOL. 128, NO. 6, 2006 2053