11014
J. Am. Chem. Soc. 1998, 120, 11014-11015
Scheme 1
Reconstruction of Vancomycin by Chemical
Glycosylation of the Pseudoaglycon
Min Ge, Christopher Thompson, and Daniel Kahne*
Department of Chemistry
Princeton UniVersity
Princeton, New Jersey 08544
ReceiVed July 9, 1998
Vancomycin (Figure 1) is a glycopeptide antibiotic that kills
cells by binding to the D-Ala-D-Ala peptide substrate involved in
cross-linking the sugar polymers that comprise the bacterial cell
wall.1 The carbohydrate portion of vancomycin is not directly
involved in binding to D-Ala-D-Ala. However, it has been shown
by scientists at Lilly that N-alkylation of the terminal vancosamine
sugar with a hydrophobic group increases activity against van-
comycin resistant strains dramatically.2,3 Despite the importance
of this carbohydrate in biological activity, no efforts to replace
the vancosamine with a different sugar have been reported.4 In
fact, as far as we know, the chemical glycosylation of vancomycin
at any position has never been achieved.5,6 Vancomycin is a
complex molecule which has a diverse array of functionality and
is sensitive to acid, base, and oxidation.7 Furthermore, it is soluble
only in water and other polar solvents, which are not compatible
with chemical glycosylation reactions. We now report a strategy
for glycosylating the pseudoaglycon of vancomycin. This chem-
istry should permit the synthesis of large numbers of vancomycin
derivatives in which the terminal carbohydrate moiety is varied.
a (a) 1 equiv 1, 2 equiv 2, 2 equiv Tf2O, 4 equiv DTBMP, EtOAc,
-78 °C, 5 min, 92%. (b) 2.5% H2NNH2, MeOH/THF ) 2:1, 3 h, 85%.
(c) 2 equiv 5, 1 equiv Tf2O, 4 equiv DTBMP, Et2O, -78 °C, 0.5 h, 71%.
(d) 2% H2NNH2, MeOH/THF ) 2:1, 8 h, 92%. (e) H2, Pearlman’s
catalyst, MeOH, 1 h, 73%.
recently by Nicolaou.8 The disaccharide contains a â-linkage to
a hindered phenol as well as an R-linkage to a 2-deoxy sugar.
We used 2,6-dimethoxyphenol as a model for the hindered phenol
in vancomycin.8 Our synthesis utilized the sulfoxide glycosylation
reaction9 and proved to be both stereospecific and efficient
(Scheme 1). The equatorial linkage to the 2,6-dimethoxy phenol
was formed in 92% isolated yield by reacting the tin salt of the
phenol10 with a suitably protected sulfoxide 2.11 Stereochemical
control was achieved with neighboring group participation by a
â-ketoester protecting group at C2. This bulky neighboring group
prevents ortho ester formation, and yet it can be readily depro-
tected using mild conditions (i.e., hydrazine).12 Following the
selective removal of the â-ketoester group, the resulting compound
4 was glycosylated on the free C2 hydroxyl with vancosamine
derivative 5.13 The axial isomer was produced exclusively in 71%
yield, and the disaccharide was then deprotected in two steps in
an overall yield of 67%.14 The synthesis of the vancomycin
disaccharide confirmed the utility of the sulfoxide method for
introducing the axial glycosidic linkage to the terminal van-
cosamine using protecting groups that can be removed under mild
conditions compatible with the integrity of the complicated
aglycone. Extending this chemistry to the synthesis of vancomycin
from the pseudoaglycon, however, proved to be considerably more
challenging.
Figure 1.
We initiated our studies to develop chemistry to glycosylate
vancomycin by synthesizing the vancomycin disaccharide. This
structure was first synthesized by Danishefsky in 1992 and more
(8) (a) Dushin, R. G.; Danishefsky, S. J. J. Am. Chem. Soc. 1992, 114,
3471. (b) Nicolaou, K. C.; Mitchell, H. J.; van Delft, F. L.; Rubsam, F.;
Rodriguez, R. M. Angew. Chem. 1998, 110, 1972.
(9) (a) Kahne, D.; Walker, S.; Cheng, Y.; Van Engen, D. J. Am. Chem.
Soc. 1989, 111, 6881. (b) Kim, S.-H.; Augeri, D.; Yang, D.; Kahne, D. J.
Am. Chem. Soc. 1994, 116, 1766. (c) Raghavan, S.; Kahne, D. J. Am. Chem.
Soc. 1993, 115, 1580. For recent studies on the mechanism of the sulfoxide
glycosylation reaction see: (d) Crich, D.; Sun, S. J. Am. Chem. Soc. 1997,
119, 11217.; (e) Gildersleeve, J.; Pascal, R. A.; Kahne, D. J. Am. Chem. Soc.
1998, 120, 5961.
(1) Walsh, C. T.; Fisher, S. L.; Park, I.-S.; Prahalad, M.; Wu, Z. Chem.
Biol. 1996, 3, 21.
(2) (a) Nagarajan, R.; Schabel, A. A.; Occolowitz, J. L.; Counter, F. T.;
Ott, J. L.; Felty-Duckworth, A. M. J. Antibiotics 1989, 42, 63. (b) Nagarajan,
R. J. Antibiotics 1993, 46, 1181. (c) Rodriguez, M. J.; Snyder, N. I.; Zweifel,
M. J.; Wilkie, S. C.; Stack, D. R.; Cooper, R. D.; Nicas, T. I.; Mullen, D. L.;
Butler, T. F.; Thompson, R. C. J. Antibiot. 1998, 51, 560.
(10) Ogawa, T.; Matsui, M. Carbohydr. Res. 1976, 51, C13.
(3) Malabarba, A.; Nicas, T. I.; Thompson, R. C. Med. Res. ReV. 1997,
(11) (a) 3,4,6-Tri-O-Bn glucose11b is converted to 2 in six steps (66%
overall). Acylation (Ac2O, pyridine, CH2Cl2,, 6h, rt), thiophenol displacement
(BF3‚Et2O, PhSH, CH2Cl2, 2h, rt) and acetate hydrolysis (NaOH/MeOH, 3h,
rt) gives 3,4,6-tri-O-Bn glucose phenyl sulfide. Transesterification11c with ethyl-
2-methyl acetoacetate (DMAP, toluene, reflux, 48 h), alkylation (MeI,
potassium-tert-butoxide, THF, 0°, 0.5 h), and oxidation (mCPBA, CH2Cl2,
-60° to -5°, 1 h) gives 2. (b) Betaneli, V. I.; Ovchinnikov, M. V.;
Backinowsky, L. V.; Kochetkov, N. K. Carbohydr. Res. 1982, 107, 285. (c)
Taber, D. F.; Amedio, J. C.; Patel, Y. K. J. Org. Chem. 1985, 50, 3618.
(12) Less-hindered esters often lead to ortho ester side products: (a) Kunz,
H.; Harreus, A. Liebigs Ann. Chem. 1982, 41. (b) Sato, S.; Nunomura, S.;
Nakano, T.; Ito, Y.; Ogawa, T. Tetrahedron Lett. 1988, 33, 4097. (c) Seeberger,
P. H.; Eckhardt, M.; Gutteridge, C. E.; Danishefsky, S. J. J. Am. Chem. Soc.
1997, 119, 10064.
17, 69.
(4) However, vancosamine has been converted to epi-vancosamine.3
(5) The vancomycin aglycon has been enzymatically glycosylated: So-
lenberg, P. J.; Matsushima, P.; Stack, D. R.; Wilkie, S. C.; Thompson, R. C.;
Baltz, R. H. Chem. Biol. 1997, 4, 195.
(6) A great deal of synthetic effort has been focused on the vancomycin
aglycon: (a) Evans, D. A.; Barrow, J. C.; Watson, P. S.; Ratz, A. M.;
Dinsmore, C. J.; Evrard, D. A.; Devries, K. M.; Ellman, J. A.; Rychnovsky,
S. D.; Lacour, J. J. Am. Chem. Soc. 1997, 119, 3419. (b) Nicolaou, K. C.;
Ramanjulu, J. M.; Natarajan, S.; Brase, S.; Li, H.; Boddy, C.; Rubsam, F.
Chem. Commun. 1997, 1899. (c) Boger, D. L.; Beresis, R. T.; Loiseleur, O.;
Wu, J. H.; Castle, S. L. Bioorg. Med. Chem. Lett. 1998, 8, 721. (d) For a
review of work up to 1995, see: Rama Rao, R. V.; Gurjar, M. K.; Reddy, K.
L.; Rao, A. S. Chem. ReV. 1995, 95, 2135.
(7) (a) Nagarajan, R.; Schabel, A. A. J. Chem. Soc., Chem. Commun. 1988,
1306. (b) Harris, C. M.; Kopecka, H.; Harris, T. M. J. Am. Chem. Soc. 1983,
105, 6915. (c) Adamczyk, M.; Grote, J.; Rege, S. Bioorg. Med. Chem. Lett.
1998, 8, 885.
(13) 5 was obtained from vancomycin in 5 steps (48% overall). Protection
of vancomycin amines (Cbz-succinimide, NaHCO3, H2O, dioxane, rt, 4 h)
followed by hydrolysis (1.5 M methanolic HCl, rt, 0.5 h), acylation (Ac2O,
pyridine, CH2Cl2, rt, 2 h), thiophenol displacement (PhSH, BF3‚Et2O, CH2-
Cl2, 0.5 h, rt), and oxidation (mCPBA, CH2Cl2 -78° to -20°, 1 h) gives 5.
10.1021/ja982414m CCC: $15.00 © 1998 American Chemical Society
Published on Web 10/10/1998