Angewandte
Chemie
units. The assembly/disassembly process can be monitored by
fluorescence and electrochemical measurements. The twee-
zering process between T and [Dn]2+ is quite similar to the
threading/dethreading processes observed with bipyridinium-
based wire-type units and ring-shaped molecules,[21] with the
advantage that tweezering can occur also when the wire-type
unit terminates with bulky groups.
Received: March 21, 2005
Published online: June 27, 2005
Keywords: dendrimers · electrochemistry · fluorescence ·
.
molecular tweezers · supramolecular chemistry
[1] a) G. R. Newkome, C. Moorefield, F. Vögtle, Dendrimers and
Dendrons: Concepts, Syntheses, and Perspectives, VCH, Wein-
heim, 2001; b) Special issue on Dendrimers and Nanoscience, D.
Astruc, C. R. Chim. 2003, 6, 709; c) V. Balzani, P. Ceroni, M.
Maestri, C. Saudan, V. Vicinelli, Top. Curr. Chem. 2003, 228, 159;
d) J-P. Majoral, A.-M. Caminade, V. Maraval, Chem. Commun.
2002, 2929; e) S. Hecht, J. M. J. FrØchet, Angew. Chem. 2001, 113,
76; Angew. Chem. Int. Ed. 2001, 40, 74; f) M. W. P. L. Baars,
E. W. Meijer, Top. Curr. Chem. 2001, 210, 131.
Figure 4. Changes in the fluorescence spectrum of a solution of T at
1.610ꢀ5 m in dichloromethane at room temperature upon addition of
10 equivalents of [D3]2+ (lex =334 nm). Inset: The titration curve
obtained by plotting the emission intensity at l=356 nm as a function
of the equivalents of [D3]2+ added, after correction for the fraction of
light absorbed by T. The solid line shows the fit based on formation of
a 1:1 complex. a.u.=arbitrary units.
[2] a) B. Alonso, D. Astruc, J.-C. Blais, S. Nlate, S. Rigaut, J. Ruiz, V.
Sartor, C. ValØrio, C. R. Acad. Sci. Ser. IIc 2001, 173; b) L. Liu, R.
Breslow, J. Am. Chem. Soc. 2003, 125, 12110; c) M. F. Ottaviani,
S. Jockusch, N. J. Turro, D. A. Tomalia, A. Barbon, Langmuir
2004, 20, 10238.
[3] a) P. A. Chase, R. J. M. K. Gebbink, G. van Koten, J. Organomet.
Chem. 2004, 689, 4016; b) D. Astruc, Pure Appl. Chem. 2003, 75,
461; c) F. Diederich, B. Felber, Proc. Natl. Acad. Sci. USA 2002,
99, 4778; d) A. Juris, M. Venturi, P. Ceroni, V. Balzani, S.
Campagna, S. Serroni, Collect. Czech. Chem. Commun. 2001, 66,
1; e) C. B. Gorman, J. C. Smith, Acc. Chem. Res. 2001, 34, 60; f) I.
Cuadrado, M. Morµn, C. M. Casado, B. Alonso, J. Losada,
Coord. Chem. Rev. 1999, 193–195, 395.
[4] a) H. D. Abruæa, Anal. Chem. 2004, 76, 310A; b) M.-C. Daniel,
F. Ba, J. A. Ruiz, D. Astruc, Inorg. Chem. 2004, 43, 8649; c) B.
Alonso, C. M. Casado, I. Cuadrado, M. Morµn, A. E. Kaifer,
Chem. Commun. 2002, 1778.
[5] C. M. Cardona, S. Mendoza, A. E. Kaifer, Chem. Soc. Rev. 2000,
29, 37.
[6] a) T. L. Chasse, C. B. Gorman, Langmuir 2004, 20, 8792; b) F.
Marchioni, M. Venturi, P. Ceroni, V. Balzani, M. Belohradsky,
A. M. Elizarov, H.-R. Tseng, J. F. Stoddart, Chem. Eur. J. 2004,
10, 6361; c) N. D. McClenahan, R. Passalacqua, F. Loiseau, S.
Campagna, B. Verheyde, A. Hameurlaine, W. Dehaen, J. Am.
Chem. Soc. 2003, 125, 5356; d) Y. Rio, G. Accorsi, N. Armaroli,
D. Felder, E. Levillain, J.-F. Nierengarten, Chem. Commun.
2002, 2830; e) P. J. Dandliker, F. Diederich, M. Gross, C. B.
Knobler, A. Louati, Angew. Chem. 1994, 106, 1821; Angew.
Chem. Int. Ed. Engl. 1994, 33, 1739.
[7] W. Ong, M. Gomez-Kaifer, A. E. Kaifer, Chem. Commun. 2004,
1677.
[8] H. W. Gibson, N. Yamaguchi, L. Hamilton, J. W. Jones, J. Am.
Chem. Soc. 2002, 124, 4653.
[9] K. J. C. van Bommel, G. A. Metselaar, W. Verboom, D. N.
Reinhoudt, J. Org. Chem. 2001, 66, 5405.
[10] J. W. Lee, Y. H. Ko, S.-H. Park, K. Yamaguchi, K. Kim, Angew.
Chem. 2001, 113, 769; Angew. Chem. Int. Ed. 2001, 40, 746.
[11] a) W. Ong, J. Grindstaff, D. Sobransingh, R. Toba, J. M.
Quintela, C. Peinador, A. E. Kaifer, J. Am. Chem. Soc. 2005,
127, 3353; b) M. Moon, J. Grindstaff, D. Sobransingh, A. E.
Kaifer, Angew. Chem. 2004, 116, 5612; Angew. Chem. Int. Ed.
2004, 43, 5496; c) W. Ong, A. E. Kaifer, Angew. Chem. 2003, 115,
by the dendrimer. The titration plot obtained for a solution of
Tat 1.6 10ꢀ5 m in dichloromethane upon addition of [D3]2+ is
shown in the inset of Figure 4. As the fluorescence lifetime
(t = 9.5 ns) is not affected upon addition of the dendrimer and
as there is no evidence of a double-exponential decay, we
conclude that even after addition of an excess of dendrimer a
significant fraction of tweezer remains uncomplexed in such a
dilute solution and that the adducts do not show any
appreciable fluorescence.
The results obtained from the titration plots show that 1:1
[Dn]2+·T adducts are formed, with values for the association
constants of the order of 104 mꢀ1 which decrease with
increasing dendrimer generation (Table 1). A similar depend-
ence of the stability of the complex on the size of the
dendrimer was observed in the gas phase by mass spectros-
copy.[12] Apparently, even in solution the bipyridinium core is
stabilized by “intramolecular solvation”, which results from
the back-folding of the electron-donor branches, an effect that
increases with increasing dendrimer generation.
The CV patterns for reduction of the dendritic cores are
affected by the presence of tweezer T (Table 1 and Figure 3)
which shows that the formation of the adduct involves an
interaction between the tweezer and the bipyridinium den-
dritic cores. In particular, both the cathodic and anodic peaks
which correspond to the first one-electron-reduction process
of the dendritic core move to more negative values upon
addition of the tweezer, whereas the peaks that correspond to
the second reduction process are almost unaffected. Such a
behavior shows that 1) formation of the adduct is caused by a
charge-transfer interaction and 2) the adduct dissociates upon
one-electron reduction of the dendritic core.
In conclusion, we have shown that the 4,4’-bipyridinium
core of first-, second-, and third-generation [Dn]2+ dendrim-
ers that bear FrØchet-type dendrons can be hosted by the
molecular tweezer T, which comprises a naphthalene moiety
and four benzene components bridged by four methylene
Angew. Chem. Int. Ed. 2005, 44, 4574 –4578
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4577