792 Jain et al.
Asian J. Chem.
TABLE-2
PHYSICAL CONSTANTS OF SYNTHESIZED
ISOXAZOLINE DERIVATIVES
Derivatives NB2, NB3, NB4 and NB6 showed greater zone
of inhibition than Rifampicin at 10 mg conc. and were the
most potent antitubercular derivatives. Derivatives NA4 and
NB1 showed greater zone of inhibition than Rifampicin at 10
mg conc. but showed intermediate anti-tubercular activity at
other concentrations. Derivatives NA1, NA2, NA3, NA5, NA6
and NB5 showed poor antitubercular activity at all concen-
trations (Table-4).
Conjugate
code
m.f.
m.w.
m.p. (ºC)
Rf* value
NA1
NA2
NA3
NA4
NA5
NA6
NB1
NB2
NB3
NB4
NB5
NB6
C15H11N2O3Br
C15H11N2O3Cl
C15H12N2O4
C17H17N3O3
C16H14N2O4
C16H14N2O3
C15H12NO2Br
C15H12NO2Cl
C15H13NO3
347
302
284
311
298
282
318
273
255
282
269
253
110-115
135-140
90-95
0.67
0.73
0.69
0.81
0.83
0.79
0.84
0.83
0.72
0.74
0.66
0.56
100-105
120-125
80-85
TABLE-4
RESULT OF IN VITRO ACTIVITY OF SYNTHESIZED
ISOXAZOLINE DERIVATIVES
120-125
135-140
200-205
120-125
115-120
155-160
Concentration of chemicals (zone of
inhibition in mm)
C17H18N2O2
C16H15NO3
C16H15NO2
Compounds
2.5 mg
–
5.0 mg
14
14
12
11
–
7.5 mg
15
10.0 mg
17
NA1
NA2
NA3
11
–
15
16
TABLE-3
SPECTRAL DATA OF THE SYNTHESIZED DERIVATIVES
Mass spectra
15
17
NA4*
NA5
10
–
14
19
Comp.
1H NMR spectra (δ) in ppm
10
13
(molecular
ion peak)
code
NA1
NA6
–
11
13
20
17
16
14
17
13
14
NB1*
NB2*
NB3*
NB4*
NB5
12
18
15
14
12
15
15
20
347.99
303.05
285.08
312.13
299.10
283.10
319.00
275.05
256.09
283.14
270.11
254.11
7.61-8.51 (r, 4H, aromatic ring), 7.08-7.36
(s, 4H, aromatic ring), 4.5 (m, 1H, CH),
3.39-3.52 (s, 2H, CH2 in ring)
21
22
21
25
NA2
NA3
NA4
NA5
NA6
NB1
NB2
NB3
NB4
NB5
NB6
7.61-8.51 (r, 4H, aromatic ring), 7.13-7.20
(s, 4H, aromatic ring), 4.5 (m, 1H, CH),
3.39-3.52 (s, 2H, CH2 in ring)
25
27
15
17
NB6*
21
25
7.61-8.49 (r, 4H, aromatic ring), 7.77-8.02
(s, 4H, aromatic ring), 7.57(r, OH), 3.37 (s,
2H, CH2 in ring)
Standard (Rifampicin)
10 mg
18
–
Control (DMSO)
7.59-8.59 (r, 4H, aromatic ring), 6.63-7.26
(s, 4H, aromatic ring), 3.04 (s, 2H, CH2 in
ring), 2.70 (s, 6H, CH3)
REFERENCES
7.62-8.42 (r, 4H, aromatic ring), 6.77-7.10
(s, 4H, aromatic ring), 3.75 (s, 3H, CH3),
3.24 (s, 2H, CH2 in ring)
1. Rakesh, D.Q. Sun, R.B. Lee, R.P. Tangallapally and R.E. Lee, Eur. J.
Med. Chem., 44, 460 (2009).
7.62-8.42 (r, 4H, aromatic ring), 6.99-7.07
(s, 4H, aromatic ring), 2.35 (s, 3H,
CH3), 3.34(s, 2H, CH2 in ring)
2. C. Changtam, P. Hongmanee and A. Suksamrarn, Eur. J. Med. Chem,
45, 4446 (2010).
3. M.A. Ali, M. Shaharyar and A.A. Siddiqui, Eur. J. Med. Chem., 42,
268 (2007).
6.80-7.21 (r, 4H, aromatic ring), 7.09-7.36
(s, 4H, aromatic ring), 5.67 (r, 1H, OH),
3.34 (s, 2H, CH2 in ring)
4. P.M. Sivakumar, S.P. Seenivasan, V. Kumar and M. Doble, Bioorg.
Med. Chem. Lett., 17, 1695 (2007).
6.76-7.20 (r, 4H, aromatic ring), 7.16-7.22
(s, 4H, aromatic ring), 5.66 (r, 1H, OH),
3.29 (s, 2H, CH2 in ring)
6.80-7.20 (r, 4H, aromatic ring), 6.66-7.02
(s, 4H, aromatic ring), 5.0 (r, 2H,
OH), 3.33 (s, 2H, CH2 in ring)
6.80-7.20 (r, 4H, aromatic ring), 6.52-7.01
(s, 4H, aromatic ring), 5.0 (r, 1H, OH), 2.85
(s, 6H, CH3), 3.33 (s, 2H, CH2 in ring)
6.80-7.20 (r, 4H, aromatic ring), 6.70-7.08
(s, 4H, aromatic ring), 5.0 (r, 1H, OH), 3.73
(s, 3H, CH3), 3.33 (s, 2H, CH2 in ring)
6.80-7.20 (r, 4H, aromatic ring), 6.99-7.07
(s, 4H, aromatic ring), 5.0 (r, 1H, OH), 2.35
(s, 3H, CH3), 3.33 (s, 2H, CH2 in ring)