44
Whereas the FAB-MS spectra of methanofullerenes 1, 2 and 5 showed the expected molecular ion
peaks, no characteristic peaks could be observed for the dendrons of highest generation. Actually,
due to aggregation resulting probably from fullerene–fullerene interactions, high energy is required
for dissociation during FAB-MS analysis and therefore fragmentation occurs, especially on the fragile
benzylic ester functions. Furthermore, the molecular masses are quite high and no easily protonable sites
1
are present in these dendrons. Nevertheless, the H and 13C NMR, IR, UV–vis and elemental analysis
data obtained for the dendrons provide good evidence for the proposed structures.
Following the preparation of dendrimers with a fullerene core or with peripheral C60 subunits, we have
now succeeded in the preparation of fullerene-functionalized dendrons containing a C60 sphere at each
branching unit. Those new dendritic branches appear to be versatile building blocks for the preparation
of fullerene-rich macromolecules and their attachment on a functional core is now under investigation in
our laboratory.
Acknowledgements
We thank A. Van Dorsselaer, H. Nierengarten and R. Hueber for recording the mass spectra, J.-D.
Sauer for NMR measurements and L. Oswald for technical help.
References
1. Newkome, G. R.; Moorefield, C. N.; Vögtle, F. Dendritic Molecules: Concepts, Synthesis and Perspectives; VCH:
Weinheim, 1996.
2. Balzani, V.; Campagna, S.; Denti, G.; Juris, A.; Serroni, S.; Venturi, M. Acc. Chem. Res. 1998, 31, 26–34; Frey, H.
Angew. Chem., Int. Ed. Engl. 1998, 37, 2193–2197; Archut, A.; Vögtle, F. Chem. Soc. Rev. 1998, 27, 233–240; Zeng, F.;
Zimmerman, S. C. Chem. Rev. 1997, 97, 1681–1712; Smith, D. K.; Diederich, F. Chem. Eur. J. 1998, 4, 1353–1361.
3. Wooley, K. L.; Hawker, C. J.; Fréchet, J. M. J.; Wudl, F.; Srdanov, G.; Shi, S.; Li, C.; Kao, M. J. Am. Chem. Soc. 1993,
115, 9836–9837; Camps, X.; Hirsch, A. J. Chem. Soc., Perkin Trans. 1 1997, 1595–1596; Camps, X.; Schönberger, H.;
Hirsch, A. Chem. Eur. J. 1997, 3, 561–567; Nierengarten, J.-F.; Habicher, T.; Kessinger, R.; Cardullo, F.; Diederich, F.;
Gramlich, V.; Gisselbrecht, J.-P.; Boudon, C.; Gross, M. Helv. Chim. Acta 1997, 80, 2238–2276.
4. Cardullo, F.; Diederich, F.; Echegoyen, L.; Habicher, T.; Jayaraman, N.; Leblanc, R. M.; Stoddart, J. F.; Wang, S. Langmuir
1998, 14, 1955–1959.
5. Nierengarten, J.-F.; Felder, D.; Nicoud, J.-F. Tetrahedron Lett. 1999, 40, 269–272.
6. Nierengarten, J.-F.; Felder, D.; Nicoud, J.-F. Tetrahedron Lett. 1999, 40, 273–276.
7. Armaroli, N.; Boudon, C.; Felder, D.; Gisselbrecht, J.-P.; Gross, M.; Marconi, G.; Nicoud, J.-F.; Nierengarten, J.-F.;
Vicinelli, V. Angew. Chem., in press.
8. t-Butyl 2-hydroxyacetate was prepared in two steps from t-butyl 2-bromoacetate as described in: Jurayj, J.; Cushman, M.
Tetrahedron 1992, 48, 8601–8614.
9. Bingel, C. Chem. Ber. 1993, 126, 1957–1959.
10. Bouzide, A.; Sauvé, G. Tetrahedron Lett. 1997, 38, 5945–5948.
11. Nierengarten, J.-F.; Hermann, A.; Tykwinski, R. R.; Rüttimann, M.; Diederich, F.; Boudon, C.; Gisselbrecht, J.-P.; Gross,
M. Helv. Chim. Acta 1997, 80, 293–316.
12. Kocienski, P. J. Protecting Groups; Thieme: Stuttgart, 1994, pp. 52–54.
1
13. Selected spectroscopic data for 11: H NMR (CDCl3, 200 MHz): 0.88 (t, J=6, 12H), 1.20–1.43 (m, 52H), 1.53 (s, 9H),
1.60–1.80 (m, 12H), 3.86 (t, J=6, 4H), 3.90 (t, J=6, 8H), 4.22 (t, J=6, 4H), 4.84 (s, 2H), 4.94 (s, 4H), 5.46 (s, 6H), 6.33
(t, J=2, 1H), 6.40 (t, J=2, 2H), 6.57 (d, J=2, 2H), 6.60 (d, J=2, 4H). Anal. calcd for C264H122O24: C 86.22%, H 3.34%.
Found: C 86.07%, H 3.36%. For 13: 1H NMR (CDCl3, 400 MHz): 0.88 (t, J=6, 24H), 1.20–1.46 (m, 116H), 1.54 (s, 9H),
1.56–1.79 (m, 28H), 3.85 (t, J=6, 4H), 3.86 (t, J=6, 8H), 3.91 (t, J=6, 16H), 4.23 (t, J=6, 4H), 4.24 (t, J=6, 8H), 4.85 (s,
2H), 4.94 (s, 12H), 5.45 (s, 2H), 5.47 (s, 12H), 6.33 (t, J=2, 1H), 6.35 (t, J=2, 2H), 6.42 (t, J=2, 4H), 6.56 (d, J=2, 4H), 6.58
(d, J=2, 2H), 6.61 (d, J=2, 8H). Anal. calcd for C608H266O56·3CHCl3: C 83.16%. H 3.07%. Found: C 83.09%, H 3.18%.